Role of solid lipid nanoparticles as drug delivery vehicles on the pharmacokinetic variability of Erlotinib HCl

Author(s):  
Rajani Rampaka ◽  
Ommi Kusuma ◽  
Naveen Chella
Author(s):  
Prarthna Yadav ◽  
Harshita Mishra ◽  
Manju Nagpal ◽  
Geeta Aggarwal

Background: Leukemia is a severe type of blood cancer that involves an abnormal proliferation of blood-forming cells. Its conventional treatment faces many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. Nano drug delivery systems help in overcoming these challenges by delivering the drug to the target site actively or passively. Solid lipid nanoparticles are gaining popularity because they reduce unwanted toxicity, are biocompatible, increase bioavailability and are versatile in terms of incorporated agents (hydrophilic as well as lipophilic drugs, genes, enzymes, etc.). Purpose: The aim of this review is to discuss recent advancements in anti-leukemic therapy utilizing Solid lipid nanoparticles (SLNs) as successful carriers in enhancing efficiency of the treatment and bioavailability of the incorporated drug along with overcoming multi drug resistance. Methods: This review represents the existing literature on the applications of SLNs in anti-leukemic therapy. A qualitative literature review has been done for this purpose. We performed keyword research in popular databases such as Google Scholar, Wiley, Elsevier, Scopus, Google patent and PubMed. Only articles published in English and from reputed journals from specific fields were considered. Benchmark studies having major importance from 2000 to 2020 were selected to follow the progress in the field across the globe. Results: This article improves the understanding of role of SLNs in treatment of leukemia. Traditional anti-leukemic therapy involves many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. SLNs are emerging as a better alternative to conventional delivery systems as they can reduce unwanted toxicity, are biocompatible, and can provide active as well as passive molecular targeting. Conclusion: SLNs provide several advantages in drug delivery for leukemia including enhancement of efficiency and bioavailability and reduction of toxicity by virtue of their small size, lipid core, non-dependency on organic solvents and versality in terms of incorporated drugs.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

2014 ◽  
Vol 88 (3) ◽  
pp. 746-758 ◽  
Author(s):  
Daniela Chirio ◽  
Marina Gallarate ◽  
Elena Peira ◽  
Luigi Battaglia ◽  
Elisabetta Muntoni ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68743-68750 ◽  
Author(s):  
Sacheen Kumar ◽  
Jaspreet Kaur Randhawa

Paliperidone is an antipsychotic drug having poor water solubility and bioavailability. Solid lipid nanoparticles of stearic acid loaded with paliperidone were prepared to enhance the bioavailability.


2006 ◽  
Vol 325 (1-2) ◽  
pp. 140-146 ◽  
Author(s):  
Maria Antonietta Casadei ◽  
Felice Cerreto ◽  
Stefania Cesa ◽  
Maria Giannuzzo ◽  
Michelle Feeney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document