Association of Wearable Device Use With Pulse Rate and Health Care Use in Adults With Atrial Fibrillation

2021 ◽  
Vol 61 (1) ◽  
pp. 115-116
Author(s):  
W. Libo ◽  
K. Nielson ◽  
J. Goldberg
2021 ◽  
Vol 4 (5) ◽  
pp. e215821
Author(s):  
Libo Wang ◽  
Kyron Nielsen ◽  
Joshua Goldberg ◽  
Jeremiah R. Brown ◽  
John S. Rumsfeld ◽  
...  

2021 ◽  
Author(s):  
Daisuke Hiraoka ◽  
Tomohiko Inui ◽  
Eiryo Kawakami ◽  
Megumi Oya ◽  
Ayumu Tsuji ◽  
...  

BACKGROUND Some attempts have been made to detect atrial fibrillation with a wearable device equipped with photoelectric volumetric pulse wave technology, and it is expected to be applied under real clinical conditions. OBJECTIVE This study is the second part of a two-phase study aimed at developing a method for immediate detection of paroxysmal atrial fibrillation (AF) using a wearable device with built-in PPG. The objective of this study is to develop an algorithm to immediately diagnose atrial fibrillation by wearing an Apple Watch equipped with a photoplethysmography (PPG) sensor on patients undergoing cardiac surgery and using machine learning of the pulse data output from the device. METHODS A total of 80 subjects who underwent cardiac surgery at a single institution between June 2020 and March 2021 were monitored for postoperative atrial fibrillation using telemetry monitored ECG and Apple Watch. Atrial fibrillation was diagnosed by qualified physicians from telemetry-monitored ECGs and 12-lead ECGs; a diagnostic algorithm was developed using machine learning on pulse rate data output from the Apple Watch. RESULTS One of the 80 patients was excluded from the analysis due to redness of the Apple Watch wearer. 27 (34.2%) of the 79 patients developed AF, and 199 events of AF, including brief AF, were observed. 18 events of AF lasting longer than 1 hour were observed, and Cross-correlation analysis (CCF) showed that pulse rate measured by Apple Watch was strongly correlated (CCF 0.6-0.8) with 8 events and very strongly correlated (CCF >0.8) with 3 events. The diagnostic accuracy by machine learning was 0.7952 (sensitivity 0.6312, specificity 0.8605 at the point closest to the top-left) for the AUC of the ROC curve. CONCLUSIONS We were able to safely monitor pulse rate in patients after cardiac surgery by wearing an Apple Watch. Although the pulse rate from the PPG sensor does not follow the heart rate of the telemetry monitoring ECG in some parts, which may reduce the accuracy of the diagnosis of atrial fibrillation by machine learning, we have shown the possibility of clinical application of early detection of atrial fibrillation using only the pulse rate collected by the PPG sensor. CLINICALTRIAL The use of wristband type continuous pulse measurement device with artificial intelligence for early detection of paroxysmal atrial fibrillation Clinical Research Protocol No. jRCTs032200032 https://jrct.niph.go.jp/latest-detail/jRCTs032200032


Sign in / Sign up

Export Citation Format

Share Document