Acute exposure effects of tetracycline, ampicillin, sulfamethoxazole, and their mixture on nutrient removal and microbial communities in the activated sludge of air-scouring and reciprocation membrane bioreactors

2022 ◽  
Vol 304 ◽  
pp. 114165
Author(s):  
Ryan De Sotto ◽  
Xin Jie Lee ◽  
Sungwoo Bae
2019 ◽  
Vol 5 (5) ◽  
pp. 884-896 ◽  
Author(s):  
Jacob W. Metch ◽  
Hong Wang ◽  
Yanjun Ma ◽  
Jennifer H. Miller ◽  
Peter J. Vikesland ◽  
...  

An improved understanding of nitrifying microbial communities in wastewater treatment is imperative for proper design and operation of biological nutrient removal systems.


2013 ◽  
Vol 68 (2) ◽  
pp. 366-371 ◽  
Author(s):  
A. M. Saunders ◽  
P. Larsen ◽  
P. H. Nielsen

The composition of nutrient-removing microbial communities in five full-scale membrane bioreactors (MBRs) was investigated using fluorescence in situ hybridization and 16S rRNA pyrosequencing and compared to similar analyses of conventional activated sludge (CAS) communities. The communities were highly similar but some genera that are always present in enhanced biological phosphorus removal (EBPR) (core groups) were absent in the MBRs. The overall phylogenetic similarity of the communities indicated that these differences were primarily closely related groups. More research is needed to establish the operational significance of the observed differences between MBR and CAS sludge.


2016 ◽  
Vol 101 ◽  
pp. 214-225 ◽  
Author(s):  
Sung Jun Jo ◽  
Hyeokpil Kwon ◽  
So-Yeon Jeong ◽  
Chung-Hak Lee ◽  
Tae Gwan Kim

2018 ◽  
Vol 226 ◽  
pp. 347-357 ◽  
Author(s):  
Giorgio Mannina ◽  
George A. Ekama ◽  
Marco Capodici ◽  
Alida Cosenza ◽  
Daniele Di Trapani ◽  
...  

1990 ◽  
Vol 22 (7-8) ◽  
pp. 113-121
Author(s):  
W. Maier

In view of the new effluent standards in West Germany, including nitrification and phosphorus elimination, many of the existing sewage treatment plants will have to be rebuilt or expanded. Another demand which will have to be dealt with in the near future is denitrification. Under consideration of the large BOD5-loads which were taken into account when designing the plants, many of them nitrify during the summer or can be easily converted to operate with nitrification. Principles for planning the upgrading of such plants have been laid down in order to achieve the required effluent concentrations. The application of these principles is demonstrated with examples of upgraded plants.


1997 ◽  
Vol 35 (10) ◽  
pp. 87-94 ◽  
Author(s):  
R. Sorm ◽  
J. Wanner ◽  
R. Saltarelli ◽  
G. Bortone ◽  
A. Tilche

The phenomenon of anoxic phosphate uptake with simultaneous denitrification was studied. For this purpose kinetic batch tests have been carried out by using the activated sludge samples from three modifications of nutrient removal activated sludge systems: two based on an anaerobic-anoxic-oxic (A2/O) system and a third on an anaerobic-oxic (A/O) system. The results showed significant differences in anoxic phosphate uptake rate between activated sludge which was alternatively exposed to anoxic conditions and activated sludge from the A/O arrangement. These differences were also accompanied by different denitrification rates. Simultaneously with batch experiments the microscopic observation of activated sludge samples was carried out. Neisser and Gram stained samples showed clear differences in shape, size and distribution of polyphosphate accumulating bacteria between A2/O and A/O Processes. Moreover, experiments performed using genetic probes confirmed the differences in microbiological composition of activated sludge samples from different nutrient removal system arrangements.


Chemosphere ◽  
2006 ◽  
Vol 63 (10) ◽  
pp. 1699-1708 ◽  
Author(s):  
Hyeok Choi ◽  
Kai Zhang ◽  
Dionysios D. Dionysiou ◽  
Daniel B. Oerther ◽  
George A. Sorial

2018 ◽  
Vol 42 (3) ◽  
pp. 379-390 ◽  
Author(s):  
G. Güneş ◽  
E. Hallaç ◽  
M. Özgan ◽  
A. Ertürk ◽  
D. Okutman Taş ◽  
...  

2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


Sign in / Sign up

Export Citation Format

Share Document