Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources

2022 ◽  
Vol 304 ◽  
pp. 114189
Author(s):  
Josenilda Carlos dos Santos ◽  
Déborah Romaskevis Gomes Lopes ◽  
Lívia Carneiro Fidélis Silva ◽  
José Luiz Lima Ramos ◽  
Roberto Sousa Dias ◽  
...  
1988 ◽  
Vol 42 (1-4) ◽  
pp. 905-908
Author(s):  
B. H. Huynh ◽  
I. Moura ◽  
A. R. Lino ◽  
J. J. G. Moura ◽  
J. Legall

2020 ◽  
Vol 14 (3) ◽  
pp. 384-395
Author(s):  
Juan Yin ◽  
Chao-Bing Deng ◽  
Hongxiang Zhu ◽  
Jianhua Xiong ◽  
Zhuo Sun

Sulfate reducing bacteria (SRB) are widely used to remove heavy metals because of their high efficiency. However, the metabolic processes of SRB require additional carbon sources, and the development of low-cost carbon sources has gradually attracted attention. The utilization of sugar byproduct resources, as the low-cost carbon sources, has great practical significance for environmentally sustainable development in Guangxi, China. This study aims to cultivate SRB with low-cost sugar byproducts, apply them to controlling a lead-polluted environment, and study the effects and mechanisms of controlling lead pollution. The research results show that the best culture effect of SBR can be obtained by mixing the filter mud and vinasse in a ratio of 1:1 to 3:1. SRB have average lead removal rates of more than 96.97% in solutions with different lead concentration of 10∼100 mg/L, and SRB have a higher tolerance to high concentrations of lead due to factors such as the organic substance composition of sugar byproducts and the porosity of filter mud. Scanning electron microscopy combined with energy dispersive spectrometry and X-ray diffraction analysis show that SRB mainly cause Pb2+ to form PbS precipitate through redox reactions to remove lead from the solution. Therefore, low-cost filters of a mud and vinasse mixture can be used as a medium for SRB and exhibit high heavy metal removal efficiency, thus providing a new utilization of filter mud and vinasse.


1979 ◽  
Vol 25 (12) ◽  
pp. 1433-1442 ◽  
Author(s):  
L. G. Leduc ◽  
G. D. Ferroni

Aerobic heterotrophic bacteria, anaerobic heterotrophic bacteria, ammonifying bacteria, sulfur-oxidizing bacteria, and sulfate-reducing bacteria were quantitated in Fairbank Lake, an oligotrophic to mesotrophic lake with a permanently cold hypolimnion, as a function of depth in three seasons. Representatives of each physiological group were recovered at an incubation temperature of 2 °C and for all the physiological groups the 2 °C counts were usually higher than the 37 °C counts, although sulfate-reducing bacteria were not recoverable at an incubation temperature of 37 °C. In addition, the numbers of each physiological type were generally higher in the sediments than in the water column, except in the case of sulfate-reducing bacteria for which the counts were low and often below the detection limit. Aerobic heterotrophic bacteria usually outnumbered the other physiological groups surveyed, and winter minima were characteristic of some of the physiological groups. A relatively stable density of anaerobic heterotrophic bacteria, as a function of sediment depth, was observed when the incubation temperature was 2 °C. At 37 °C, these anaerobes were not detected, and this was true for sulfate-reducing bacteria at both temperatures.Heterotrophic bacterial isolates from the permanently cold sediments were examined with regard to Gram reaction, the obligate or facultative nature of anaerobes, ability to use ecologically important substrates, psychrophilic type, and temperature range for growth. Isolates recovered at 2 °C were predominantly Gram-negative bacilli, whereas isolates recovered at 37 °C were predominantly Gram-positive bacilli. The anaerobic isolates were mainly Gram-positive bacilli regardless of the isolation temperature, and most of those examined were obligately anaerobic. Many of the isolates tested were positive for gelatinase, chitinase, amylase, and lipase, but none was positive for cellulase. Most of the sediment isolates were facultatively psychrophilic and a considerable fraction of the 37 °C isolates were facultative psychrophiles.


Archaea ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Christoph Wrede ◽  
Anne Dreier ◽  
Sebastian Kokoschka ◽  
Michael Hoppert

During the last few years, the analysis of microbial diversity in various habitats greatly increased our knowledge on the kingdom Archaea. At the same time, we became aware of the multiple ways in which Archaea may interact with each other and with organisms of other kingdoms. The large group of euryarchaeal methanogens and their methane oxidizing relatives, in particular, take part in essential steps of the global methane cycle. Both of these processes, which are in reverse to each other, are partially conducted in a symbiotic interaction with different partners, either ciliates and xylophagous animals or sulfate reducing bacteria. Other symbiotic interactions are mostly of unknown ecological significance but depend on highly specific mechanisms. This paper will give an overview on interactions between Archaea and other organisms and will point out the ecological relevance of these symbiotic processes, as long as these have been already recognized.


Sign in / Sign up

Export Citation Format

Share Document