Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China

2022 ◽  
Vol 304 ◽  
pp. 114303
Author(s):  
Wenqing Li ◽  
Wenli Wang ◽  
Jiahui Chen ◽  
Zhiming Zhang
2013 ◽  
Vol 20 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ross B. Cunningham ◽  
David B. Lindenmayer ◽  
Mason Crane ◽  
Damian R. Michael ◽  
Philip S. Barton ◽  
...  

2014 ◽  
Vol 24 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
Ross Cunningham ◽  
David Lindenmayer ◽  
Philip Barton ◽  
Karen Ikin ◽  
Mason Crane ◽  
...  

2019 ◽  
Vol 612 ◽  
pp. 29-42 ◽  
Author(s):  
NR Evensen ◽  
C Doropoulos ◽  
KM Morrow ◽  
CA Motti ◽  
PJ Mumby

2021 ◽  
Vol 11 (12) ◽  
pp. 5423
Author(s):  
Jose Luis Martinez ◽  
Manuel Esteban Lucas-Borja ◽  
Pedro Antonio Plaza-Alvarez ◽  
Pietro Denisi ◽  
Miguel Angel Moreno ◽  
...  

The evaluation of vegetation cover after post-fire treatments of burned lands is important for forest managers to restore soil quality and plant biodiversity in burned ecosystems. Unfortunately, this evaluation may be time consuming and expensive, requiring much fieldwork for surveys. The use of remote sensing, which makes these evaluation activities quicker and easier, have rarely been carried out in the Mediterranean forests, subjected to wildfire and post-fire stabilization techniques. To fill this gap, this study evaluates the feasibility of satellite (using LANDSAT8 images) and drone surveys to evaluate changes in vegetation cover and composition after wildfire and two hillslope stabilization treatments (log erosion barriers, LEBs, and contour-felled log debris, CFDs) in a forest of Central Eastern Spain. Surveys by drone were able to detect the variability of vegetation cover among burned and unburned areas through the Visible Atmospherically Resistant Index (VARI), but gave unrealistic results when the effectiveness of a post-fire treatment must be evaluated. LANDSAT8 images may be instead misleading to evaluate the changes in land cover after wildfire and post-fire treatments, due to the lack of correlation between VARI and vegetation cover. The spatial analysis has shown that: (i) the post-fire restoration strategy of landscape managers that have prioritized steeper slopes for treatments was successful; (ii) vegetation growth, at least in the experimental conditions, played a limited influence on soil surface conditions, since no significant increases in terrain roughness were detected in treated areas.


2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


2016 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
E. Iglesias-Rodríguez ◽  
M. E. Cruz ◽  
J. Bravo-Castillero ◽  
R. Guinovart-Díaz ◽  
R. Rodríguez-Ramos ◽  
...  

Heterogeneous media with multiple spatial scales are finding increased importance in engineering. An example might be a large scale, otherwise homogeneous medium filled with dispersed small-scale particles that form aggregate structures at an intermediate scale. The objective in this paper is to formulate the strong-form Fourier heat conduction equation for such media using the method of reiterated homogenization. The phases are assumed to have a perfect thermal contact at the interface. The ratio of two successive length scales of the medium is a constant small parameter ε. The method is an up-scaling procedure that writes the temperature field as an asymptotic multiple-scale expansion in powers of the small parameter ε . The technique leads to two pairs of local and homogenized equations, linked by effective coefficients. In this manner the medium behavior at the smallest scales is seen to affect the macroscale behavior, which is the main interest in engineering. To facilitate the physical understanding of the formulation, an analytical solution is obtained for the heat conduction equation in a functionally graded material (FGM). The approach presented here may serve as a basis for future efforts to numerically compute effective properties of heterogeneous media with multiple spatial scales.


2021 ◽  
Author(s):  
Ben L. Gilby ◽  
Andrew D. Olds ◽  
Christopher J. Brown ◽  
Rod M. Connolly ◽  
Christopher J. Henderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document