Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea

2022 ◽  
Vol 305 ◽  
pp. 114367
Author(s):  
Wahyu Luqmanul Hakim ◽  
Fatemeh Rezaie ◽  
Arip Syaripudin Nur ◽  
Mahdi Panahi ◽  
Khabat Khosravi ◽  
...  
2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


2022 ◽  
Vol 14 (2) ◽  
pp. 321
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Liangshuai Wei ◽  
Xiangqiang Zeng

Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced convolutional neural network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN-based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected Zhangzha Town in Sichuan Province, China, and Lantau Island in Hong Kong, China, as the study areas. Each landslide inventory and corresponding predisposing factors were stacked to form spatial datasets for LSM. The receiver operating characteristic analysis, area under the curve (AUC), and several statistical metrics, such as accuracy, root mean square error, Kappa coefficient, sensitivity, and specificity, were used to evaluate the performance of the models. Finally, the trained models were calculated, and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine learning-based models have a satisfactory performance. The CNN-based model exhibits an excellent prediction capability and achieves the highest performance but also significantly reduces the salt-of-pepper effect, which indicates its great potential for application to LSM.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2664
Author(s):  
Sunil Saha ◽  
Jagabandhu Roy ◽  
Tusar Kanti Hembram ◽  
Biswajeet Pradhan ◽  
Abhirup Dikshit ◽  
...  

The efficiency of deep learning and tree-based machine learning approaches has gained immense popularity in various fields. One deep learning model viz. convolution neural network (CNN), artificial neural network (ANN) and four tree-based machine learning models, namely, alternative decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of India, and the results were compared. Landslide areas were delimited and mapped as landslide inventory (LIM) after gathering information from historical records and periodic field investigations. In LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides) subsets randomly to train and validate the models. A total of 21 landslide conditioning factors (LCFs) were considered as model inputs, and the results of each model were categorised under five susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank 1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying 23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART, FTree and LMT models. This research might be useful in landslide studies, especially in locations with comparable geophysical and climatological characteristics, to aid in decision making for land use planning.


Sign in / Sign up

Export Citation Format

Share Document