scholarly journals Novel antioxidant peptides from Yak bones collagen enhanced the capacities of antiaging and antioxidant in Caenorhabditis elegans

2022 ◽  
Vol 89 ◽  
pp. 104933
Author(s):  
Yali Wang ◽  
Yidan Sun ◽  
Xingguo Wang ◽  
Yue Wang ◽  
Langxing Liao ◽  
...  
Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 444 ◽  
Author(s):  
Weizhang Jia ◽  
Qiong Peng ◽  
Linnan Su ◽  
Xuesong Yu ◽  
Chung Ma ◽  
...  

The hard clam Meretrix meretrix, which has been traditionally used as medicine and seafood, was used in this study to isolate antioxidant peptides. First, a peptide-rich extract was tested for its protective effect against paraquat-induced oxidative stress using the nematode model Caenorhabditis elegans. Then, three novel antioxidant peptides; MmP4 (LSDRLEETGGASS), MmP11 (KEGCREPETEKGHR) and MmP19 (IVTNWDDMEK), were identified and were found to increase the resistance of nematodes against paraquat. Circular dichroism spectroscopy revealed that MmP4 was predominantly in beta-sheet conformation, while MmP11 and MmP19 were primarily in random coil conformation. Using transgenic nematode models, the peptides were shown to promote nuclear translocation of the DAF-16/FOXO transcription factor, a pivotal regulator of stress response and lifespan, and induce the expression of superoxide dismutase 3 (SOD-3), an antioxidant enzyme. Analysis of DAF-16 target genes by real-time PCR reveals that sod-3 was up-regulated by MmP4, MmP11 and MmP19 while ctl-1 and ctl-2 were also up-regulated by MmP4. Further examination of daf-16 using RNA interference suggests that the peptide-increased resistance of C. elegans to oxidative stress was DAF-16 dependent. Taken together, these data demonstrate the antioxidant activity of M. meretrix peptides, which are associated with activation of the stress response factor DAF-16 and regulation of the antioxidant enzyme genes.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 490
Author(s):  
Xuesong Yu ◽  
Qina Su ◽  
Tianqi Shen ◽  
Qiong Chen ◽  
Ying Wang ◽  
...  

The hydrolysate of golden cuttlefish (Sepia esculenta) was prepared by using papain, and then, it was further separated by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The peptide components of the active fraction were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then two novel peptides, SeP2 (DVEDLEAGLAK, 1159.27 Da) and SeP5 (EITSLAPSTM, 1049.22 Da), were obtained and displayed significant alleviation effects on oxidative stress in Caenorhabditis elegans. Studies indicated that S. esculenta antioxidant peptides (SePs) increase superoxide dismutase (SOD) activity but reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levelsin oxidation-damaged nematodes. Using transgenic CF1553 nematodes, the sod-3p::GFP expression in the worms treated with SePs was significantly higher than that of the control nematodes. Real-time PCR also demonstrated that the expression of stress-related genes such as sod-3 is up-regulated by SePs. Furthermore, studies showed that SePs could obviously decrease fat accumulation as well as reduce the elevated ROS and MDA levels in high-fat nematodes. Taken together, these results indicated that SePs are capable of the activation of antioxidant defense and the inhibition of free radicals and lipid peroxidation, play important roles in attenuating oxidative stress and fat accumulation in C. elegans, and might have the potential to be used in nutraceutical and functional foods.


2021 ◽  
Vol 81 ◽  
pp. 104462
Author(s):  
Hui Shi ◽  
Xuqiao Hu ◽  
Hang Zheng ◽  
Chunlei Li ◽  
Lianli Sun ◽  
...  

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


1998 ◽  
Vol 3 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Glenda A Walker ◽  
David W Walker ◽  
Gordon J Lithgow

Sign in / Sign up

Export Citation Format

Share Document