scholarly journals Operating room ventilation systems: Recovery Degree, Cleanliness Recovery Rate and Air Change Effectiveness in an ultra-clean area.

Author(s):  
J.L.A. Lans ◽  
N.M.C. Mathijssen ◽  
A. Bode ◽  
J.J. van den Dobbelsteen ◽  
M. van der Elst ◽  
...  
Author(s):  
Kristin G. King ◽  
George L. Delclos ◽  
Eric L. Brown ◽  
Susan Tortolero Emery ◽  
Jose Miguel Yamal ◽  
...  

2004 ◽  
Vol 25 (4) ◽  
pp. 297-301 ◽  
Author(s):  
Mikael Persson ◽  
Jan van der Linden

AbstractBackground and Objective:Despite the novelties in operating room ventilation, airborne bacteria remain an important source of surgical wound contamination. An ultraclean airflow from the ceiling downward may convey airborne particles from the surgical team into the wound, thus increasing the risk of infection. Therefore, similar ventilation from the wound upward should be considered. We investigated the effect of wound ventilation on the concentration of airborne particles in a wound model during simulated surgery.Design:Randomized experimental study simulating surgery with a wound cavity model.Setting:An operating room of a university hospital ventilated with ultraclean air directed downward.Interventions:Particles 5 um and larger were counted with and without a 5-cm deep cavity and with and with-out the insufflation of ultraclean air.Results:With the surgeon standing upright, no airborne particles could be detected in the wound model. In contrast, during simulated operations, the median number of particles per 0.1 cu ft reached 18 (25th and 75th percentiles, 12 and 22.25) in the model with a cavity and 15.5 (25th and 75th percentiles, 14 and 21.5) without. With a cavity, wound ventilation markedly reduced the median number of particles to 1 (range, 0 to 1.25;P< .001).Conclusions:To protect a surgical wound against direct airborne contamination, air should be directed away from the wound rather than toward it. This study provides supportive evidence to earlier studies that operating room ventilation with ultraclean air is imperfect during surgical activity and that wound ventilation may be a simple complement. Further clinical trials are needed.


1974 ◽  
Vol 73 (1) ◽  
pp. 61-74 ◽  
Author(s):  
W. Whyte ◽  
B. H. Shaw ◽  
M. A. R. Freeman

SUMMARYThis paper contains an assessment of the physical performance of a permanently installed down-flow laminar-flow operating room at the London Hospital. This system employs partial walls extending 0.76 m (2.5 ft.) from the ceiling, from which the air is allowed to issue freely downwards at an initial velocity of about 0.4 m./sec. (80 ft./min.).The usefulness of the partial wall, as compared with a free issuing system, was demonstrated and a comparison made with a fully walled system. It was shown that a fully walled system would be more efficient than a partial-walled system as there was a loss in air velocity of about 20–25% with the partial wall due to the nonconstrained flow of air. This loss would be reflected in an increase in airborne bacterial count and would mean that an increase of 20–25% in the air volume would be required to obtain the same conditions as with the full-walled system. Entrainment of contaminated air was demonstrated but it was concluded that this would be of little consequence in the centre of the clean area, i.e. at the wound site. Sterile instruments, etc., however, on the outside of the clean area, would be more liable to airborne contamination.Bacterial and dust airborne counts taken during total hip operations gave a very low average figure (0.3 bacteria/ft.3 or 10.5/m.3) from which we conclude that the system was about 30 times cleaner in terms of airborne bacteria than a well ventilated conventional operating-room. We concluded that although the partial-walled system was slightly less efficacious than a normal full-walled system, the freedom of movement and of communication for the operating team could in some circumstances outweigh this disadvantage.Sound levels were such that normal conversation was possible with little or no awareness of background noise.


1972 ◽  
Vol 51 (6) ◽  
pp. 968???974 ◽  
Author(s):  
LILIA USUBIAGA ◽  
J. ANTONIO ALDRETE ◽  
VERA FISEROVA-BERGEROVA

Author(s):  
Jian Bao ◽  
Jianhua Li

Abstracts Background: The relation between type of ventilation used in the operating room and surgical site infection has drawn considerable attention with its conflicting results. A possible relationship between the type of ventilation used in the operating room and surgical site infection has been reported. This meta-analysis was performed to evaluate this relationship. Methods: A systematic literature search up to May 2020 identified 14 studies with 590,121 operations, 328,183 operations of which were performed under laminar airflow ventilation and 261,938 of which were performed operations under conventional ventilation. These articles reported relationships between type of operating-room ventilation with its different categories and surgical site infection: 10 studies were related to surgical site infection in the total hip replacement; 7 studies in total knee arthroplasties; and 3 studies in different abdominal and open vascular surgery. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated comparing surgical site infection prevalence and type of operating room ventilation using the dichotomous method with a random-effects or fixed-effects model. Results: No significant difference was found between operation performed under laminar airflow ventilation and conventional ventilation in total hip replacement (OR, 1.23; 95% CI, 0.97–1.56, P = .09), in total knee arthroplasties (OR, 1.14; 95% CI, 0.62–2.09; P = .67), and in different abdominal and open vascular surgery (OR, 0.75; 95% CI, 0.43-1.33; P = .33). The impact of the type of operating room ventilation may have no influence on surgical site infection as a tool for decreasing its occurrence. Conclusions: Based on this meta-analysis, operating under laminar airflow or conventional ventilation may have no independent relationship with the risk of surgical site infection. This relationship forces us not to recommend the use of laminar airflow ventilation because it has a much higher cost compared to conventional ventilation.


Sign in / Sign up

Export Citation Format

Share Document