scholarly journals LB821 Human hair follicle dermal papilla as an in vitro model to study stress-induced hair growth arrest

2021 ◽  
Vol 141 (9) ◽  
pp. B28
Author(s):  
G. Dellacqua A. Richards
2021 ◽  
Author(s):  
Meriem Bejaoui ◽  
Aprill Kee Oliva ◽  
May Sin Ke ◽  
Farhana Ferdousi ◽  
Hiroko Isoda

Abstract IntroductionDermal papilla cells (DPc) is an important element in studying the hair follicle (HF) niche. The human hair follicle dermal papilla cells (HFDPC) are widely used as an in vitro model to study hair growth related research. These cells are usually grown in 2D culture, nevertheless, this system did not show efficient therapeutic effect on HF regeneration and growth, and key differences were observed between cell activity in vitro and in vivo. ObjectiveRecent studies have showed that HFDPC grown in 3D hanging spheroids is more morphologically akin to intact DPc microenvironment. This current study showed that the 3D model is applicable to the commercial cell line with new insights on its variability by comparing to previous studies of gene signature restored by 3D culture.Methods and Results Our data demonstrated that HFDPCS grown in 3D in vitro model can influence not only hair growth-related pathways but also immune system -related pathways compared to 2D cell monolayer. Furthermore, we compared the expression of signalling molecules and metabolism-associated proteins of HFDPC in minoxidil (FDA approved drug for hair loss treatment) and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (recently found to induce hair growth in vitro and in vivo) treated 3D and 2D cell cultures using microarray analysis. Conclusion Further validation of the results confirms the suitability of this cell line for 3D model while providing new insights such as to the mechanisms behind the hair growth effects of 3D spheroid treated with hair growth promoting agents.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9867
Author(s):  
Ke Sha ◽  
Mengting Chen ◽  
Fangfen Liu ◽  
San Xu ◽  
Ben Wang ◽  
...  

Platelet-rich plasma (PRP) has been reported recently as a potential therapeutic approach for alopecia, such as androgenetic alopecia, but the exact mechanisms and effects of specific components of this recipe remain largely unknown. In this study, we identified that platelet factor 4 (PF4), a component of PRP, significantly suppressed human hair follicle growth and restrained the proliferation of human dermal papilla cells (hDPCs). Furthermore, our results showed that PF4 upregulated androgen receptor (AR) in human dermal papilla cells in vitro and via hair follicle organ culture. Among the hair growth-promoting and DP-signature genes investigated, PF4 decreased the expression of Wnt5a, Wnt10b, LEF1, HEY1 and IGF-1, and increased DKK1 expression, but did not affect BMP2 and BMP4 expression. Collectively, Our data demonstrate that PF4 suppresses human hair follicle growth possibly via upregulating androgen receptor signaling and modulating hair growth-associated genes, which provides thought-provoking insights into the application and optimization of PRP in treating hair loss.


2018 ◽  
Vol 233 (11) ◽  
pp. 9015-9030 ◽  
Author(s):  
Abhishak C. Gupta ◽  
Shikha Chawla ◽  
Ashok Hegde ◽  
Divya Singh ◽  
Balaji Bandyopadhyay ◽  
...  

2006 ◽  
Vol 642 (1) ◽  
pp. 148-164 ◽  
Author(s):  
MICHAEL P. PHILPOTT ◽  
GILLIAN E. WESTGATE ◽  
TERENCE KEALEY

1990 ◽  
Vol 52 (1) ◽  
pp. 3-7
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Kimitaka KANNO ◽  
Katsuyuki TAKEDA

Sign in / Sign up

Export Citation Format

Share Document