Enhanced red emission and thermal stability of Ca(MoO4)0.8(WO4)0.2:xDy3+, yEu3+ phosphors by charge compensation

2022 ◽  
Vol 241 ◽  
pp. 118504
Author(s):  
Zhongxu Han ◽  
Shuchen Lü ◽  
Qingyu Meng ◽  
Mengsi Sun ◽  
Yandong Ren
2015 ◽  
Vol 8 (7) ◽  
pp. 072603 ◽  
Author(s):  
Rie Suzuki ◽  
Yoshihiro Takahashi ◽  
Kenichiro Iwasaki ◽  
Nobuaki Terakado ◽  
Takumi Fujiwara

Nanomaterials ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 66 ◽  
Author(s):  
Wen-Quan Liu ◽  
Dan Wu ◽  
Hugejile Chang ◽  
Ru-Xia Duan ◽  
Wen-Jie Wu ◽  
...  

Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Irina Kudryavtseva ◽  
Aleksandr Lushchik ◽  
Aarne Maaroos ◽  
Zhannur Azmaganbetova ◽  
Turlybek Nurakhmetov ◽  
...  

AbstractA comparative study of the excitation of luminescence by VUV radiation as well as of thermally and photostimulated luminescence has been carried out for CaSO4:Tb3+ and CaSO4:Gd3+ phosphors, where Na+ or F− ions are used for charge compensation. The distinction in hole processes for the phosphors with Na+ or F− compensators is determined by the differing thermal stability of the holes localized at/near Tb3+Na+ and Gd3+Na+ (up to 100–160 K) or at/near Tb3+F− V Ca and Gd3+F− V Ca centers involving also a cation vacancy (up to 400–550 K). Tunnel luminescence in the pairs of localized electrons and holes nearby Tb3+ or Gd3+ has been detected. The mechanisms of electron-hole, hole-electron and tunnel recombination luminescence as well as a subsequent released energy transfer to RE3+ ions are considered.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


1991 ◽  
Vol 1 (12) ◽  
pp. 1823-1836 ◽  
Author(s):  
M. Bessière ◽  
A. Quivy ◽  
S. Lefebvre ◽  
J. Devaud-Rzepski ◽  
Y. Calvayrac

1994 ◽  
Vol 4 (4) ◽  
pp. 653-657
Author(s):  
B. Bonzi ◽  
M. El Khomssi ◽  
H. Lanchon-Ducauquis

1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-63-Pr2-66 ◽  
Author(s):  
R. Varga ◽  
P. Vojtaník ◽  
A. Lovas

Sign in / Sign up

Export Citation Format

Share Document