Fe/Ni diffusion behavior in the shear-extrusion solid state bonding process

2021 ◽  
Vol 67 ◽  
pp. 35-45
Author(s):  
Shuangjie Zhang ◽  
Wei Wang ◽  
Shibo Ma ◽  
Qiang Li
2007 ◽  
Vol 544-545 ◽  
pp. 183-186 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Yeong Moo Yi

The surface oxidation behavior was investigated over a range of solid state bonding condition of the Ti-6Al-4V ELI alloy. Since the oxides at the bonding interface may prevent the materials from complete bonding, it is important to understand the oxidation behavior at solid state bonding condition. The activation energy of oxidation of Ti-6Al-4V ELI is estimated to be 318 KJ/mol in an environment of solid state bonding process. For Ti-6Al-4V ELI alloy, strucutral integrity of bonding interface without oxides have been obtained at 850°C applying pressure of 3MPa for 1 hour. Solid state diffusion bonding of Ti-15V-3Cr-3Sn-3Al alloy was also obtained under a pressure of 6MPa for 3 hours at 925°C.


2011 ◽  
Vol 409 ◽  
pp. 871-876 ◽  
Author(s):  
P. Vinothkumar ◽  
S.M. Ganesan ◽  
Jan K. Solberg ◽  
B. Salberg ◽  
P.T. Moe

Shielded Active Gas Forge Welding (SAG-FW) is a solid state bonding process in which two mating surfaces are locally heated and forged together to form a bond. SAG-FW has so far mainly been used to join materials for pipe-line and casing applications. The present study has been conducted on an API 5CT L80 grade material in a prototype forge welding machine. Small-scale pipe specimens have been extracted from the wall of the production casing. The SAG-FW process is completed within a few seconds of heating and forging followed by controlled cooling. The microstructure of the weld is determined by the processing parameters. In this paper, microstructure results for SAG-FW processed L80 material have been obtained for a range of cooling rates and systematically compared with microhardness values. Microstructure observations at different regions of the weld have been made. Faster heating rate and controlled cooling resulted in a mixture of non equilibrium microstructures, but satisfactory mechanical properties have been obtained for optimized processing parameters.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Chu-Hsuan Sha ◽  
Chin C. Lee

Pure gold (Au) is used as a bonding medium to bond silicon (Si) chips to alumina substrates. The bonding process is performed at 260 °C with only 150 psi (1.0 MPa) static pressure applied. This is a solid-state bonding without any molten phase involved. The Au layer plated on alumina is ductile enough to deform for its surface to mate with the thin Au layer coated on Si. Au atoms on both sides of the bond line are brought within atomic distance and bonding is achieved. The ductile Au joint also accommodates the significant mismatch in coefficient of thermal expansion (CTE) between Si and alumina. Scanning electron microscope (SEM) evaluations show that nearly perfect joints are achieved and no voids are observed. Five samples are shear tested. They all pass the MIL-STD-883G standard. This bonding technique can be applied to bonding any two objects that can be coated with smooth Au layers. The 260 °C bonding temperature is compatible with typical reflow temperature of Sn3.5Ag solders used in electronic industries.


2000 ◽  
Vol 653 ◽  
Author(s):  
Takehiko Ito ◽  
Shigeki Saito ◽  
Kunio Takahashi ◽  
Tadao Onzawa

AbstractWe propose a new method to simulate the interface diffusion in the solid-state bonding-process. This method is more significant under the condition of low pressure and low temperature. It is available for the bonding of two bodies which consist of the atoms of the same kind and have slight surface roughness. In a conventional method, the elastic deformation during the bonding process is considered. The interface diffusion is enhanced and the bonding time decreases when the external pressure changes at appropriate frequency. In order to clarify the enhancement effect of changing the pressure, we examine three cases, i.e., the 1st pressure type is constant pressure, the 2nd type is zero pressure, and the 3rd type is the on-off pressure. Our results suggest the on-off pressure decreases the required time for the perfect bonding if we choose on appropriate frequency.


Sign in / Sign up

Export Citation Format

Share Document