Validation of materials-informed digital twin: Mapping residual strains in HSLA steel weldment using high energy X-rays

2022 ◽  
Vol 74 ◽  
pp. 75-87
Author(s):  
Charles R. Fisher ◽  
Kelly E. Nygren ◽  
Armand J. Beaudoin
2005 ◽  
Vol 490-491 ◽  
pp. 287-293 ◽  
Author(s):  
Jonathan Almer ◽  
Geoffrey A. Swift ◽  
John A. Nychka ◽  
Ersan Üstündag ◽  
David R. Clarke

Synchrotron x-rays are used for in situ determination of oxide strain, during oxide formation on a Kanthal A1 FeCrAlZr substrate at 1160°C. The measurements rely on use of high-energy (~80keV) x-rays and transmission geometry, and the methodology of the strain measurements is presented. Oxide growth strains at elevated temperature, relative to pure alumina, were seen to be small, while temperature excursions induced significant strains. Furthermore, significant strain relaxation was observed during isothermal holds, suggesting oxide creep as a major relaxation mechanism. Upon cooling to room temperature, significant residual strains developed, with a corresponding in-plane residual stress of -3.7 GPa.


2011 ◽  
Vol 681 ◽  
pp. 399-404 ◽  
Author(s):  
Joana Rebelo-Kornmeier ◽  
Jens Gibmeier ◽  
Michael Hofmann ◽  
Robert C. Wimpory

For non destructive stress analysis of surface treated steel samples the application of laboratory X rays or high energy synchrotron radiation in reflection mode covers the region from some micrometers up to a depth of about 150 - 200 µm. To access depth regions deeper than 200 µm the incremental layer removal technique in combination with the repeated application of X‑ray stress analysis for the newly generated surfaces can be used. However, this procedure is destructive, laborious and furthermore, it has to be checked whether corrections have to be applied due to stress relaxation. By using neutron radiation penetration depths generally up to several millimetres can be achieved non destructively [1]. However neutron measurements are critical at the surface. When scanning a sample surface, aberration peak shifts caused by so called spurious strains arise due to the fact that the gauge volume defined by the primary and secondary optics is partially outside of the sample. These aberration peak shifts can be of the same order of magnitude as the peak shifts related to residual strains [2-6]. In this exemplary study it will be demonstrated that, by optimising the bending radius of a Si (400) monochromator, the spurious surface strains can be strongly reduced when compared to the values obtained with a traditional Ge (311) mosaic monochromator, even when the gauge volume is mainly out of the surface. The objective of the experiments is to find the optimal monochromator settings for the Si (400) monochromator at the STRESS-SPEC instrument at the research reactor FRM II, Munich, Germany. For the parametric studies a stress free steel sample of the fine grained construction steel, S690QL was used. The optimised conditions for the Si (400) monochromator that resulted from the systematic studies were applied to a shot peened plate of steel SAE 4140. The residual stress distribution is analysed by means of through surface strain scanning. The residual stress gradient obtained is in very good agreement with the well characterised residual stress depth profile obtained within a round robin test in the scope of the BRITE-EURAM-project ENSPED (European Network of Surface and Prestress Engineering and Design) [7]. The results indicated that surface residual stress profiles can be measured with neutrons up to 200 µm underneath the surface without time consuming and laborious surface effect corrections.


2013 ◽  
Vol 768-769 ◽  
pp. 280-285
Author(s):  
Andrew M. Venter ◽  
O. Philip Oladijo ◽  
L.A. Cornish ◽  
Natasha Sacks

Residual strains and stresses associated with the processing steps of the industrial high-velocity oxygen-fuel (HVOF) thermal spray technique, was non-destructively characterised in both the coatings and substrates. A range of substrates, having coefficients of thermal expansion different to that of the as-coated WC-Co material, have been considered to assess the potential role of the thermal misfit associated with the coating procedure. Surface and depth resolved studies of the in-plane and normal components of residual strains have been investigated by exploiting the penetrating capabilities of high energy synchrotron X-rays in conjunction with micron sized gauge volumes to enable strain gradient determination with high positional resolution. Results reveal the presence of large residual strain/stress mismatches at the interface region in all the substrate materials, whereas the strains/stresses in the as-coated material are small, seemingly independent of the substrate material. The different contributions due to the HVOF process are qualitatively assessed in terms of an eigenstrains (plastic deformation) approach.


2008 ◽  
Vol 571-572 ◽  
pp. 271-276 ◽  
Author(s):  
Xu Song ◽  
Shu Yan Zhang ◽  
Daniele Dini ◽  
Alexander M. Korsunsky

Most models based on continuum mechanics do not account for inhomogeneities at the micro-scale. This can be achieved by considering a representative volume of material and using (poly)crystal elasto-plastic deformation theory to model the effects of grain morphology and crystallographic orientation. In this way, the relationship between the macroscopic stress state and the stress state at the grain level can be investigated in detail. In addition, this approach enables the determination of the inhomogeneous fields of plastic strain, the identification of regions of localised plasticity (persistent slip bands), grain level shakedown, and the prediction of fatigue crack initiation using energy dissipation at the micro-scale. Elastic anisotropy is known to promote earlier onset of yielding, and to increase the magnitude of intergranular residual stresses. The effect of hardening behaviour of different slip systems on intergranular residual stresses is more subtle, as discussed in the text. The present study focuses on the analysis average intergranular residual strains and stresses that arise within the polycrystal aggregate following the application of single or cyclic external loading. These residual strains can also be evaluated experimentally using diffraction of penetrating radiation, e.g. neutrons or high energy X-rays, allowing comparisons with the model predictions to be made.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2020 ◽  
Vol 33 (6) ◽  
pp. 11-16
Author(s):  
K. E. Nygren, ◽  
D. C. Pagan, ◽  
J. P. C. Ruff ◽  
E. Arenholz ◽  
J. D. Brock

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


Sign in / Sign up

Export Citation Format

Share Document