Yield shear stress model of magnetorheological fluids based on exponential distribution

2014 ◽  
Vol 360 ◽  
pp. 174-177 ◽  
Author(s):  
Chu-wen Guo ◽  
Fei Chen ◽  
Qing-rui Meng ◽  
Zi-xin Dong
2017 ◽  
Vol 26 (6) ◽  
pp. 065009 ◽  
Author(s):  
Liang Ma ◽  
Wanli Song ◽  
Rensheng Wang ◽  
Shichao Xiu

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lifeng Li ◽  
Weili Gong ◽  
Huilin Deng ◽  
Xiaohu Zhang ◽  
Gan Li

Red clay is a special soil layer with complex engineering properties distributed in tropical and subtropical regions. An anchor cable support is a common form of red clay slope support. The effectiveness of the anchor cable support is mainly determined by the anchoring force provided by the red clay stratum. Increase of the water content will lead to the rapid deterioration of the mechanical properties of red clay, which will lead to the reduction of the anchoring force of the slope anchor cable and lead to the failure of the support. Based on the classical Phillips and uniform anchorage shear stress distribution theory, this paper puts forward a uniform-exponential distribution pattern of anchorage shear stress according to the specific characteristics of red clay by using the characteristics of the peak shear strength and residual shear strength of the rock and soil mass. With increasing anchorage force, the dynamic evolution (single exponential distribution ⟶ double single exponential distribution ⟶ uniform index exponential complex distribution ⟶ uniform distribution) of the anchorage shear stress is analysed. Based on the peak and residual test of the cohesive force and internal friction angle, the relationship between the anchoring force and buried depth and water content is established by analysing the factors influencing the anchoring force. It can be found from the field test that, according to the relationship established, the limit anchorage force of the anchor cable in the red clay stratum can be calculated and the water sensitivity of the anchor cable’s limit anchorage force can be quantitatively analysed.


Author(s):  
Daoming Wang ◽  
Bin Zi ◽  
Yishan Zeng ◽  
Fangwei Xie ◽  
Youfu Hou

Mechanical properties are critical to the working performance of magnetorheological fluids (MRFs), especially in high temperature situations. This paper presents an experimental investigation to analyze the effects of temperature on mechanical properties of MRFs. First, a parallel disk method was implemented for the shear stress measurement of MRFs and the measurement principle was theoretically illustrated. Then, a detailed introduction to the MRF sample preparation and the testing device development was performed as well. In the study, five kinds of MRF samples with different material parameters were prepared and a shear stress testing device which possesses the temperature control function was developed and evaluated. After these, a series of measurements were conducted on the viscosity–temperature characteristic, shear stress–temperature characteristic and thermal stability of MRF samples. Measuring results indicated that the mechanical properties of MRFs were obviously dependent on temperature. The phenomenon mainly embodied in the reduction of off-field viscosity and shear stress with increasing temperature, as well as the performance degradation after undergoing a low–high–low temperature cycle or a high temperature treatment of more than 150 ℃.


Sign in / Sign up

Export Citation Format

Share Document