Modelling of thermal conductivity and nonlinear mechanical behavior of straw insulation composite by a numerical homogenization approach

2021 ◽  
pp. 103144
Author(s):  
Brahim Ismail ◽  
Naima Belayachi ◽  
Dashnor Hoxha ◽  
Laurent Arbaret
Author(s):  
C. Mahesh ◽  
K. Govindarajulu ◽  
V. Balakrishna Murthy

The aim of this paper is to establish the homogenization approach that eliminates the difficulties encountered by the conventional numerical methods in analyzing thermal behavior of the multi-material component systems with minimum computational resources. Analysis of problems with intricacies or larger domains can be made simpler through finite element assisted homogenization approach. In this paper, applicability of homogenization approach is verified by considering two cases (i) composite with voids and (ii) composite with fibers distributed randomly. Fiber randomness case is investigated by Digital Image-Based (DIB) modeling technique in association with MATLAB’S image processing module. Also effect of transverse fiber crack on the effective thermal conductivity of the composite is studied. Results of homogenization approach compared with micro-mechanics approach yielded maximum percentage deviation of 1.72% for voids case and 1.49% for fiber randomness case.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Author(s):  
Joseph Park ◽  
Andrew Shin ◽  
Somaye Jafari ◽  
Joseph L. Demer

AbstractThe optic nerve (ON) is a recently recognized tractional load on the eye during larger horizontal eye rotations. In order to understand the mechanical behavior of the eye during adduction, it is necessary to characterize material properties of the sclera, ON, and in particular its sheath. We performed tensile loading of specimens taken from fresh postmortem human eyes to characterize the range of variation in their biomechanical properties and determine the effect of preconditioning. We fitted reduced polynomial hyperelastic models to represent the nonlinear tensile behavior of the anterior, equatorial, posterior, and peripapillary sclera, as well as the ON and its sheath. For comparison, we analyzed tangent moduli in low and high strain regions to represent stiffness. Scleral stiffness generally decreased from anterior to posterior ocular regions. The ON had the lowest tangent modulus, but was surrounded by a much stiffer sheath. The low-strain hyperelastic behaviors of adjacent anatomical regions of the ON, ON sheath, and posterior sclera were similar as appropriate to avoid discontinuities at their boundaries. Regional stiffnesses within individual eyes were moderately correlated, implying that mechanical properties in one region of an eye do not reliably reflect properties of another region of that eye, and that potentially pathological combinations could occur in an eye if regional properties are discrepant. Preconditioning modestly stiffened ocular tissues, except peripapillary sclera that softened. The nonlinear mechanical behavior of posterior ocular tissues permits their stresses to match closely at low strains, although progressively increasing strain causes particularly great stress in the peripapillary region.


2017 ◽  
Vol 50 (17) ◽  
pp. 6369-6384 ◽  
Author(s):  
Mathieu Tauban ◽  
Jean-Yves Delannoy ◽  
Paul Sotta ◽  
Didier R. Long

Sign in / Sign up

Export Citation Format

Share Document