Subject's thermal adaptation in different built environments: An analysis of updated metadata-base of thermal comfort data in India

2022 ◽  
Vol 46 ◽  
pp. 103844
Author(s):  
Sanjay Kumar
2020 ◽  
Vol 12 (19) ◽  
pp. 7961 ◽  
Author(s):  
Shady Attia

Climate responsive design can amplify the positive environmental effects necessary for human habitation and constructively engage and reduce the energy use of existing buildings. This paper aims to assess the role of the thermal adaptation design strategy on thermal comfort perception, occupant behavior, and building energy use in twelve high-performance Belgian households. Thermal adaptation involves thermal zoning and behavioral adaptation to achieve thermal comfort and reduce energy use in homes. Based on quantitative and qualitative fieldwork and in-depth interviews conducted in Brussels, the paper provides insights on the impact of using mechanical systems in twelve newly renovated nearly- and net-zero energy households. The article calls for embracing thermal adaptation as a crucial design principle in future energy efficiency standards and codes. Results confirm the rebound effect in nearly zero energy buildings and the limitation of the current building energy efficiency standards. The paper offers a fresh perspective to the field of building energy efficiency that will appeal to researchers and architects, as well as policymakers.


2019 ◽  
Vol 11 (15) ◽  
pp. 4166 ◽  
Author(s):  
Liu ◽  
Zhu ◽  
Kim ◽  
Srebric

Computational fluid dynamics (CFD) is an effective analysis method of personalized ventilation (PV) in indoor built environments. As an increasingly important supplement to experimental and theoretical methods, the quality of CFD simulations must be maintained through an adequately controlled numerical modeling process. CFD numerical data can explain PV performance in terms of inhaled air quality, occupants’ thermal comfort, and building energy savings. Therefore, this paper presents state-of-the-art CFD analyses of PV systems in indoor built environments. The results emphasize the importance of accurate thermal boundary conditions for computational thermal manikins (CTMs) to properly analyze the heat exchange between human body and the microenvironment, including both convective and radiative heat exchange. CFD modeling performance is examined in terms of effectiveness of computational grids, convergence criteria, and validation methods. Additionally, indices of PV performance are suggested as system-performance evaluation criteria. A specific utilization of realistic PV air supply diffuser configurations remains a challenging task for further study. Overall, the adaptable airflow characteristics of a PV air supply provide an opportunity to achieve better thermal comfort with lower energy use based on CFD numerical analyses.


2011 ◽  
Vol 31 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Tzu-Ping Lin ◽  
Richard de Dear ◽  
Ruey-Lung Hwang

2016 ◽  
Vol 5 (4) ◽  
pp. 352-371 ◽  
Author(s):  
Salman Shooshtarian ◽  
Ian Ridley

Purpose Assessment of outdoor thermal perception in urban spaces is of particular importance due to its financial, social and ecological consequences. Thermal perception includes four elements: thermal sensation votes (TSV), thermal preference (Tpref), overall thermal comfort (Tc) and thermal acceptability (Taccept). Thermal acceptability can offer a benchmark that specifies the acceptable thermal range (ATR), which is useful for urban planners, designers, and bio-meteorologists. ATR, however, can be defined either using direct or indirect measures. The purpose of this paper is to investigate the validity of the indirect measures of ATR, which are most commonly used in outdoor thermal comfort assessments. Design/methodology/approach This study was conducted in the context of Melbourne, which has an oceanic temperate climate (Cfb). Three sites forming RMIT University City Campus (RUCC) were selected as the case studies, which were located in the heart of Melbourne Central Business District. A field survey was conducted in RUCC during three seasons, from November 2014 (Spring) to May 2015 (Autumn), which consisted of concurrent field measurements and questionnaire surveys from 9:00 a.m. to 5:00 p.m. Findings In total, 1,059 valid questionnaires were collected from the three sites of RUCC. The results of comparative analysis between the different measures of ATR determination showed that the various elements of thermal perceptions expressed the users’ thermal judgements in different ways. Therefore, it was found that the instruction recommended by the thermal comfort standards on the definition of ATR failed to provide an appropriate estimation of ATR for outdoor built environments. The ATR, defined using TSV, therefore, was revised by the direct measure of thermal acceptability. The resulting range showed broader limits in acceptable thermal conditions in RUCC outdoor spaces users. Lastly, the results suggest that in the absence of directly measured acceptability of thermal conditions in field surveys, overall comfort is the most appropriate indirect measure to use. Originality/value Some indoor thermal comfort studies have used the alternatives for defining ATR. However, as the applicability of these four methods is yet to be fully explored in outdoor conditions with large weather variations, it is valuable to conduct a comparative analysis among these methods. This study also intended to understand the dynamics of comfort range under non-steady and non-uniform outdoor conditions. The resultant outcome has provided information on the relationship between different measures of thermal perceptions. Ultimately, this research aimed to explore the extent to which the indirect measures of acceptability are considered as a reliable source of information compared to the direct measure.


2013 ◽  
Vol 357-360 ◽  
pp. 403-406
Author(s):  
Yi Hu

Some of the elements of a new vision for broad, spatially and temporally extensive data on occupant satisfaction in built environments coupled with processes to drive improvement in green building practice. The survey demonstrated that occupants in green buildings were more satisfied with thermal comfort and air quality in their workspace. The studying contents on specific strategies which will promote the environment building in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giorgia Chinazzo ◽  
Jan Wienold ◽  
Marilyne Andersen

Abstract Understanding the factors that affect human thermal responses is necessary to properly design and operate low-energy buildings. It has been suggested that factors not related to the thermal environment can affect thermal responses of occupants, but these factors have not been integrated in thermal comfort models due to a lack of knowledge of indoor factor interactions. While some studies have investigated the effect of electric light on thermal responses, no study exists on the effect of daylight. This study presents the first controlled experimental investigation on the effect of daylight quantity on thermal responses, combining three levels of daylight illuminance (low ~130 lx, medium ~600 lx, and high ~1400 lx) with three temperature levels (19, 23, 27 °C). Subjective and objective thermal responses of 84 participants were collected through subjective ratings on thermal perception and physiological measurements, respectively. Results indicate that the quantity of daylight influences the thermal perception of people specifically resulting in a cross-modal effect, with a low daylight illuminance leading to a less comfortable and less acceptable thermal environment in cold conditions and to a more comfortable one in warm conditions. No effect on their physiological responses was observed. Moreover, it is hypothesised that a warm thermal environment could be tolerated more whenever daylight is present in the room, as compared to the same thermal condition in a room lit with electric lights. Findings further the understanding of factors affecting human thermal responses and thermal adaptation processes in indoor environments and are relevant for both research and practice. The findings suggest that daylight should be considered as a factor in thermal comfort models and in all thermal comfort investigations, as well as that thermal and daylight illuminance conditions should be tuned and changed through the operation and design strategy of the building to guarantee its occupants’ thermal comfort in existing and future structures.


2021 ◽  
Author(s):  
Lisette Klok ◽  
Erica Caverzam Barbosa ◽  
Luc van Zandbrink ◽  
Jeroen Kluck

<p>In face of climate change and urbanization, the need for thermally comfortable outdoor urban spaces is increasing. In the design of the thermally comfortable urban spaces and decision making about interventions that enhance thermal comfort, scientists and professionals that work for cities use meteorological measurements and models. These measurements can be done by professional and accurate meteorological sensors, but also by simpler mobile instruments such as the easy-to-use Kestrel weather meters. In using these simple type of sensors, it is important to know what the performance of these sensors is for outdoor thermal comfort assessments and how they can be used by scientists and professionals in decision making about urban designs that enhance thermal comfort.</p><p>To answer these questions, we carried out three experiments in the summer of 2020 in Amsterdam, in which we tested the 11 Kestrel 5400 heat stress sensors and assessed the performance of this equipment for thermal comfort studies. We concluded that Kestrel sensors can be used very well for assessing differences in air temperature and PET (Physiological Equivalent Temperature) between outdoor built environments. For both air temperature and PET, the RMSE between the 11 Kestrel sensors was 0.5 °C maximum when measuring the same conditions. However, Kestrel sensors that were placed in the sun without a wind vane mounted to the equipment showed large radiation errors. In this case, temperature differences up to 3.4 °C were observed compared to Kestrels that were shaded. The effect of a higher air temperature on the PET calculation is, however, surprisingly small. A sensitivity analysis showed that an increase of 3 °C in the air temperature results in a maximal PET reduction of 0.5 °C. We concluded that Kestrel sensors can very well be used for assessing differences between air temperatures and PET between two locations and assessing the thermal effects of urban designs, but care should be taken when air temperature measurements are carried out in the sun. We always recommend using the wind vanes to deviate from high radiant input orientations for the temperature sensor, and placing the stations next to each other at the beginning and at the end of the measurements to check whether the stations actually measure the same values. Any differences can be corrected afterwards.</p>


Sign in / Sign up

Export Citation Format

Share Document