LC-MS/MS studies for identification and characterization of new forced degradation products of dabrafenib and establishment of their degradation pathway

2021 ◽  
Vol 206 ◽  
pp. 114351
Author(s):  
Parul Grover ◽  
Monika Bhardwaj ◽  
Lovekesh Mehta
Author(s):  
S. K. REEHANA ◽  
K. SUJANA

Objective: The current study focused on the development, validation, and characterization of forced degradation products using LC-MS/MS. Methods: A simple, selective, validated and well-defined isocratic HPLC methodology for the quantitative determination of Tucatinib at a wavelength of 239 nm. An isocratic elution of samples was performed on an Inertsil ODS (250x4.6 mm, 5m) column with a mobile phase of 70:30v/v Acetonitrile and formic acid (0.1%) delivered at a flow rate of 1.0 ml/min. MS/MS was used to characterize degradation products formed in the forced degradation study. The validation and characterization of forced degradation products were performed in accordance with ICH guidelines. Results: Over the concentration range of 5-100μg/ml, a good linear response was obtained. Tucatinib's LOD and LOQ were determined to be 0.05 and 0.5, respectively. According to standard guidelines, the method was quantitatively evaluated in terms of system suitability, linearity, precision, accuracy, and robustness, and the results were found to be within acceptable limits. The drug was degraded under acidic, alkaline, and reduction conditions in forced degradation studies. Conclusion: The method was found to be applicable for routine tucatinib analysis. Because no LC-MS/MS method for estimating tucatinib and its degradation products has been reported in the literature. There is a need to develop a method for studying the entire tucatinib degradation pathway.


2020 ◽  
Vol 26 (6) ◽  
pp. 425-431
Author(s):  
Naga Veera Yerra ◽  
S Babu Dadinaboyina ◽  
LSSN Vigjna Abbaraju ◽  
MVN Kumar Talluri ◽  
Jagadeshwar Reddy Thota

Indacaterol (IND), 5-[2-[(5,6-Diethyl-2,3-dihydro-1H-inden-2-yl)amino]-1-hydroxyethyl]-8-hydroxyquinolin-2(1H)-one, is an active pharmaceutical ingredient (API) which is used to treat chronic obstructive pulmonary disease (COPD). We followed the International Council for Harmonization (ICH) guide lines to study the degradation behavior of IND under various stress conditions. Stressed degradation of the drug was performed under hydrolytic (alkaline, acidic and neutral), photolytic, oxidative and thermal conditions. Identification and characterization of IND and its forced degradation products (DPs) were demonstrated by using LC-HRMS and MS/MS method. A total of three DPs (DP1-DP3) were identified and characterized. The IND was found to be stable under photolytic, oxidative and thermal conditions, whereas it produced three DPs in acidic, basic and neutral hydrolytic stress conditions.


2018 ◽  
Vol 07 (03) ◽  
Author(s):  
Rajesh Babu KB ◽  
Nagaraju P ◽  
Rajendra ◽  
Gowri Sankar D ◽  
Seshagiri Rao JVLN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document