Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO

2022 ◽  
Vol 522 ◽  
pp. 230998
Author(s):  
Yuming Wu ◽  
Sahil Garg ◽  
Mengran Li ◽  
Mohamed Nazmi Idros ◽  
Zhiheng Li ◽  
...  
2021 ◽  
Vol 13 (13) ◽  
pp. 15132-15142
Author(s):  
Emiliana R. Cofell ◽  
Uzoma O. Nwabara ◽  
Saket S. Bhargava ◽  
Danielle E. Henckel ◽  
Paul J. A. Kenis

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 713 ◽  
Author(s):  
Sandra Hernandez-Aldave ◽  
Enrico Andreoli

Electrocatalysis plays a prominent role in the development of carbon dioxide utilisation technologies. Many new and improved CO2 conversion catalysts have been developed in recent years, progressively achieving better performance. However, within this flourishing field, a disconnect in catalyst performance evaluation has emerged as the Achilles heel of CO2 electrolysis. Too often, catalysts are assessed in electrochemical settings that are far removed from industrially relevant operational conditions, where CO2 mass transport limitations should be minimised. To overcome this issue, gas diffusion electrodes and gas-fed electrolysers need to be developed and applied, presenting new challenges and opportunities to the CO2 electrolysis community. In this review, we introduce the reader to the fundamentals of gas diffusion electrodes and gas-fed electrolysers, highlighting their advantages and disadvantages. We discuss in detail the design of gas diffusion electrodes and their operation within gas-fed electrolysers in both flow-through and flow-by configurations. Then, we correlate the structure and composition of gas diffusion electrodes to the operational performance of electrolysers, indicating options and prospects for improvement. Overall, this study will equip the reader with the fundamental understanding required to enhance and optimise CO2 catalysis beyond the laboratory scale.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2021 ◽  
Author(s):  
Yanfang Song ◽  
Joao R. C. Junqueira ◽  
Nivedita Sikdar ◽  
Denis Öhl ◽  
Stefan Dieckhöfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document