scholarly journals A novel dynamic model for the online prediction of rate of penetration and its industrial application to a drilling process

2022 ◽  
Vol 109 ◽  
pp. 83-92
Author(s):  
Chao Gan ◽  
Wei-Hua Cao ◽  
Kang-Zhi Liu ◽  
Min Wu
Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2021 ◽  
Vol 100 ◽  
pp. 30-40
Author(s):  
Yang Zhou ◽  
Xin Chen ◽  
Haibin Zhao ◽  
Min Wu ◽  
Weihua Cao ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 127
Author(s):  
Gaoli Zhao ◽  
Pavel G. Talalay ◽  
Xiaopeng Fan ◽  
Nan Zhang ◽  
Yunchen Liu ◽  
...  

Hot-water drilling in ice with near-bottom circulation is more advantageous than traditional hot-water drilling with all-over borehole circulation in terms of power consumption and weight. However, the drilling performance of this type of drill has been poorly studied. Initial experiments showed that drilling with single-orifice nozzles did not proceed smoothly. To achieve the best drilling performance, nozzles with different orifice numbers and structures are evaluated in the present study. The testing results show that a single-orifice nozzle with a 3 mm nozzle diameter and a nine-jet nozzle with a forward angle of 35° had the highest rate of penetration (1.7–1.8 m h−1) with 5.6–6.0 kW heating power. However, the nozzles with backward holes ensured a smoother drilling process and a larger borehole, although the rate of penetration was approximately 13% slower. A comparison of the hollow and solid thermal tips showed that under the same experimental conditions, the hollow drill tip had a lower flow rate, higher outlet temperature, and higher rate of penetration. This study provides a prominent reference for drilling performance prediction and drilling technology development of hot-water drilling in ice with near-bottom circulation.


Author(s):  
Magnus Nystad ◽  
Bernt Aadnoy ◽  
Alexey Pavlov

Abstract The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the drilling process. Within the confines of operational limits, the drilling parameters affecting the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost of constructing the well. In this study, a data-driven optimization method called Extremum Seeking (ES) is employed to automatically find and maintain the optimal Weight on Bit (WOB) which maximizes the ROP. The ES algorithm is a model-free method which gathers information about the current downhole conditions by automatically performing small tests with the WOB and executing optimization actions based on the test results. In this paper, this optimization method is augmented with a combination of a predictive and a reactive constraint handling technique to adhere to operational limitations. These methods of constraint handling within ES application to drilling are demonstrated for a maximal limit imposed on the surface torque, but the methods are generic and can be applied on various drilling parameters. The proposed optimization scheme has been tested with experiments on a downscaled drilling rig and simulations on a high-fidelity drilling simulator of a full-scale drilling operation. The experiments and simulations show the method's ability to steer the system to the optimum and to handle constraints and noisy data, resulting in safe and efficient drilling at high ROP.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2058 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Ahmed Al-AbdulJabbar ◽  
Khaled Abdelgawad

The drilling rate of penetration (ROP) is defined as the speed of drilling through rock under the bit. ROP is affected by different interconnected factors, which makes it very difficult to infer the mutual effect of each individual parameter. A robust ROP is required to understand the complexity of the drilling process. Therefore, an artificial neural network (ANN) is used to predict ROP and capture the effect of the changes in the drilling parameters. Field data (4525 points) from three vertical onshore wells drilled in the same formation using the same conventional bottom hole assembly were used to train, test, and validate the ANN model. Data from Well A (1528 points) were utilized to train and test the model with a 70/30 data ratio. Data from Well B and Well C were used to test the model. An empirical equation was derived based on the weights and biases of the optimized ANN model and compared with four ROP models using the data set of Well C. The developed ANN model accurately predicted the ROP with a correlation coefficient (R) of 0.94 and an average absolute percentage error (AAPE) of 8.6%. The developed ANN model outperformed four existing models with the lowest AAPE and highest R value.


Author(s):  
Y. Xu ◽  
K. L. Yung ◽  
S. M. Ko

Static frictions are neglected in many dynamic analyses mainly due to inappropriate modeling of them. A new dynamic model describing the nonlinear and discrete features of static frictions is proposed in this paper. Using the new model, the drilling process of the hammer-drill system utilized in the EAS’ Mars mission is analyzed. It is shown that most important functions of the hammer-drill system are realized by static frictions, which were not observed before the introduction of the new model of static frictions. Static frictions provide the torsional force on the drill and make the normal impact happen before the rotation, which is critical to the efficiency of the cutting process of the hammer-drill system.


Author(s):  
Magnus Nystad ◽  
Alexey Pavlov

Abstract The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the drilling process. Within the confines of operational limits, the drilling parameters affecting the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost of constructing the well. In this study, a data-driven optimization method called Extremum Seeking is employed to automatically find and maintain the optimal Weight on Bit (WOB) which maximizes the ROP. To avoid violation of constraints, the algorithm is adjusted with a combination of a predictive and a reactive approach. This method of constraint handling is demonstrated for a maximal limit imposed on the surface torque, but the method is generic and can be applied on various drilling parameters. The proposed optimization scheme has been tested on a high-fidelity drilling simulator. The simulated scenarios show the method’s ability to steer the system to the optimum and to handle constraints and noisy data.


2021 ◽  
Author(s):  
Alexis Koulidis ◽  
Vassilios Kelessidis ◽  
Shehab Ahmed

Abstract Drilling challenging wells requires a combination of drilling analytics and comprehensive simulation to prevent poor drilling performance and avoid drilling issues for the upcoming drilling campaign. This work focuses on the capabilities of a drilling simulator that can simulate the directional drilling process with the use of actual field data for the training of students and professionals. This paper presents the results of simulating both rotating and sliding modes and successfully matching the rate of penetration and the trajectory of an S-type well. Monitored drilling data from the well were used to simulate the drilling process. These included weight on bit, revolutions per minute, flow rate, bit type, inclination and drilling fluid properties. The well was an S-type well with maximum inclination of 16 degrees. There were continuous variations from rotating to sliding mode, and the challenge was approached by classifying drilling data into intervals of 20 feet to obtain an appropriate resolution and efficient simulation. The simulator requires formation strength, pore and fracture pressures, and details of well lithology, thus simulating the actual drilling environment. The uniaxial compressive strength of the rock layer is calculated from p–wave velocity data from an offset field. Rock drillability is finally estimated as a function of the rock properties of the drilled layer, bit type and the values of the drilling parameters. It is then converted to rate of penetration and matched to actual data. Changes in the drilling parameters were followed as per the field data. The simulator reproduces the drilling process in real-time and allows the driller to make instantaneous changes to all drilling parameters. The simulator provides the rate of penetration, torque, standpipe pressure, and trajectory as output. This enables the user to have on-the-fly interference with the drilling process and allows him/her to modify any of the important drilling parameters. Thus, the user can determine the effect of such changes on the effectiveness of drilling, which can lead to effective drilling optimization. Certain intervals were investigated independently to give a more detailed analysis of the simulation outcome. Additional drilling data such as hook load and standpipe pressure were analyzed to determine and evaluate the drilling performance of a particular interval and to consider them in the optimization process. The resulting rate of penetration and well trajectory simulation results show an excellent match with field data. The simulation illustrates the continuous change between rotating and sliding mode as well as the accurate synchronous matching of the rate of penetration and trajectory. The results prove that the simulator is an excellent tool for students and professionals to simulate the drilling process prior to actual drilling of the next inclined well.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Ahmad Al-AbdulJabbar ◽  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Khaled Abdelgawad ◽  
Abdulaziz Al-Majed

During the drilling operations, optimizing the rate of penetration (ROP) is very crucial, because it can significantly reduce the overall cost of the drilling process. ROP is defined as the speed at which the drill bit breaks the rock to deepen the hole, and it is measured in units of feet per hour or meters per hour. ROP prediction is very challenging before drilling, because it depends on many parameters that should be optimized. Several models have been developed in the literature to predict ROP. Most of the developed models used drilling parameters such as weight on bit (WOB), pumping rate (Q), and string revolutions per minute (RPM). Few researchers considered the effect of mud properties on ROP by including a small number of actual field measurements. This paper introduces a new robust model to predict the ROP using both drilling parameters (WOB, Q, ROP, torque (T), standpipe pressure (SPP), uniaxial compressive strength (UCS), and mud properties (density and viscosity) using 7000 real-time data measurements. In addition, the relative importance of drilling fluid properties, rock strength, and drilling parameters to ROP is determined. The obtained results showed that the ROP is highly affected by WOB, RPM, T, and horsepower (HP), where the coefficient of determination (T2) was 0.71, 0.87, 0.70, and 0.92 for WOB, RPM, T, and HP, respectively. ROP also showed a strong function of mud fluid properties, where R2 was 0.70 and 0.70 for plastic viscosity (PV) and mud density, respectively. No clear relationship was observed between ROP and yield point (YP) for more than 500 field data points. The new model predicts the ROP with average absolute percentage error (AAPE) of 5% and correlation coefficient (R) of 0.93. In addition, the new model outperformed three existing ROP models. The novelty in this paper is the application of the clustering technique in which the formations are clustered based on their compressive strength range to predict the ROP. Clustering yielded accurate ROP prediction compared to the field ROP.


Sign in / Sign up

Export Citation Format

Share Document