Monte Carlo and Milne-like solutions for temporal correlation function in a wide temporal range

Author(s):  
V.L. Kuzmin ◽  
A.Yu. Valkov
2013 ◽  
Vol 765-767 ◽  
pp. 431-435
Author(s):  
Hong Sen Xie ◽  
Jin Bo Shi ◽  
Bao Kuan Luan ◽  
Hua Ming Tian ◽  
Peng Zhou

Non-Gaussian probability distribution radar clutter not only is temporal correlated between different pulses, but also is spatial correlated between different range bins. In this paper, the method of simulation and validation of radar clutter is proposed using spherically invariant random processes (SIRP). The amplitude probability function and temporal correlation function of radar clutter can be controlled respectively, and the spatial correlation function can be also specified. The computer simulation of K-distribution and CHI-distribution radar clutter is used to validate the method, and is to validate the amplitude probability function, temporal-spatial 2D correlation function.


2011 ◽  
Vol 474-476 ◽  
pp. 1161-1167
Author(s):  
Ting Jun Li

Non-Gaussian probability distribution radar clutter not only is temporal correlated between different pulses, but also is spatial correlated between different range bins. In this paper, the method of simulation and validation of radar clutter is proposed using spherically invariant random processes (SIRP). The amplitude probability function and temporal correlation function of radar clutter can be controlled respectively, and the spatial correlation function can be also specified. The computer simulation of K-distribution and CHI-distribution radar clutter is used to validate the method, and is to validate the amplitude probability function, temporal-spatial 2D correlation function.


Author(s):  
Igor V. Meglinski ◽  
Vladimir L. Kuzmin ◽  
Dmitry Y. Churmakov ◽  
Douglas A. Greenhalgh

Using a combination of the stochastic Monte Carlo technique and the iteration procedure of the solution to the Bethe–Salpeter equation, it has been shown that the simulation of the optical path of a photon packet undergoing an n th scattering event directly corresponds to the n th–order ladder diagram contribution. In this paper, the Monte Carlo technique is generalized for the simulation of the coherent back–scattering and temporal correlation function of optical radiation scattered within the randomly inhomogeneous turbid medium. The results of simulation demonstrate a good agreement with the diffusing wave theory and experimental results.


Sign in / Sign up

Export Citation Format

Share Document