Early Paleozoic granitic rocks of the South Qiangtang Terrane, northern Tibetan Plateau: Implications for subduction of the Proto- (Paleo-) Tethys Ocean

2020 ◽  
Vol 204 ◽  
pp. 104579
Author(s):  
Haitao Wang ◽  
Qingguo Zhai ◽  
Peiyuan Hu ◽  
Lingsen Zeng ◽  
Yue Tang ◽  
...  
2019 ◽  
Vol 127 (4) ◽  
pp. 457-473 ◽  
Author(s):  
Pei-Yuan Hu ◽  
Qing-Guo Zhai ◽  
Jun Wang ◽  
Yue Tang ◽  
Hai-Tao Wang ◽  
...  

2020 ◽  
Vol 78 ◽  
pp. 141-155 ◽  
Author(s):  
Z.B. Zhao ◽  
P.D. Bons ◽  
C. Li ◽  
G.H. Wang ◽  
X.X. Ma ◽  
...  

2018 ◽  
Vol 167 ◽  
pp. 139-151 ◽  
Author(s):  
Qing-guo Zhai ◽  
Jun Wang ◽  
Pei-yuan Hu ◽  
Hao-yang Lee ◽  
Yue Tang ◽  
...  

Author(s):  
Jiaopeng Sun ◽  
Yunpeng Dong ◽  
Licheng Ma ◽  
Shiyue Chen ◽  
Wan Jiang

The late Paleozoic to Triassic was an important interval for the East Kunlun−Qaidam area, northern Tibet, as it witnessed prolonged subduction of the South Kunlun Ocean, a major branch of the Paleo-Tethys Ocean whose closure led to the formation of Pangea. However, the geologic history of this stage is poorly constrained due to the paucity of tectonothermal signatures preserved during a magmatic lull. This article presents a set of new provenance data incorporating stratigraphic correlation, sandstone petrology, and zircon U−Pb dating to depict changes in provenance that record multiple stages of topographic and tectonic transition in the East Kunlun−Qaidam area over time in response to the evolution of the South Kunlun Ocean. Devonian intra-arc rifting is recorded by bimodal volcanism and rapid alluvial-lacustrine sedimentation in the North Qaidam Ultra High/High Pressure Belt, whose sources include the Olongbuluke Terrane and southern North Qaidam Ultra High/High Pressure Belt. Southward transgression submerged the East Kunlun−Qaidam area during the Carboniferous prior to the rapid uplift of the Kunlun arc, which changed the provenance during the Early Permian. This shift in provenance for the western Olongbuluke Terrane and thick carbonate deposition throughout the North Qaidam Ultra High/High Pressure Belt in the late Early Carboniferous indicate that the North Qaidam Ultra High/High Pressure Belt should have been inundated, terminating an ∼95 m.y. erosion history. The closure of the South Kunlun Ocean in the late Triassic generated a retroarc foreland along the Zongwulong Tectonic Belt, which is represented by the development of a deep-water, northward-tapering flysch deposystem that was supplied by the widely elevated Kunlun−Qaidam−Olongbuluke Terrane highland. This new scenario allows us to evaluate current models concerning the assembly of northern Tibet and the tectonic evolution of the Paleo-Tethys Ocean.


Author(s):  
Ye Wang ◽  
Xuanhua Chen ◽  
Yaoyao Zhang ◽  
Zheng Yin ◽  
Andrew V. Zuza ◽  
...  

Although the Cenozoic Indo-Asian collision is largely responsible for the formation of the Tibetan plateau, the role of pre-Cenozoic structures in controlling the timing and development of Cenozoic deformation remains poorly understood. In this study we address this problem by conducting an integrated investigation in the northern foreland of the Tibetan plateau, north of the Qilian Shan-Nan Shan thrust belt, NW China. The work involves field mapping, U-Pb detrital-zircon dating of Cretaceous strata in the northern foreland of the Tibetan plateau, examination of growth-strata relationships, and construction and restoration of balanced cross sections. Our field mapping reveals multiple phases of deformation in the area since the Early Cretaceous, which was expressed by northwest-trending folding and northwest-striking thrusting that occurred in the early stages of the Early Cretaceous. The compressional event was followed immediately by extension and kinematically linked right-slip faulting in the later stage of the Early Cretaceous. The area underwent gentle northwest-trending folding since the late Miocene. We estimate the magnitude of the Early Cretaceous crustal shortening to be ∼35%, which we interpret to have resulted from a far-field response to the collision between the Lhasa and the Qiangtang terranes in the south. We suggest that the subsequent extension in the Early Cretaceous was induced by orogenic collapse. U-Pb dating of detrital zircons, sourced from Lower Cretaceous sedimentary clasts from the north and the south, implies that the current foreland region of the Tibetan plateau was a topographic depression between two highland regions in the Early Cretaceous. Our work also shows that the Miocene strata in the foreland region of the northern Tibetan plateau was dominantly sourced from the north, which implies that the rise of the Qilian Shan did not impact the sediment dispersal in the current foreland region of the Tibetan plateau where this study was conducted.


Sign in / Sign up

Export Citation Format

Share Document