On the crystal structures of Ln3MO7 (Ln=Nd, Sm, Y and M=Sb, Ta)—Rietveld refinement using X-ray powder diffraction data

2009 ◽  
Vol 182 (9) ◽  
pp. 2451-2455 ◽  
Author(s):  
W.T. Fu ◽  
D.J.W. IJdo
1995 ◽  
Vol 10 (2) ◽  
pp. 86-90 ◽  
Author(s):  
R. Černý ◽  
K. Yvon ◽  
T. I. Yanson ◽  
M. B. Manyako ◽  
O. I. Bodak

Y6Cr4+xAl43−x (x = 2.57); space group P63/mcm, a = 10.8601(1) Å, c = 17.6783(3) Å, V= 1805.7(1) Å3, Z=2; isostructural to Yb6Cr4+xAl43−x, (x=1.76) with two aluminium sites partially occupied by chromium (44% and 27% Cr). YCr4−xAl8+x (x=1.22); space group I4/mmm, a = 9.0299(2) Å, c = 5.1208(2) Å, V=417.55(3) Å3, Z=2, disordered variant of CeMn4Al8 with one chromium site (8f) partially occupied by aluminium (33% Al); X-ray powder diffraction data were collected on a well-crystallized multiphase sample containing 43 wt.% of Y6Cr4+xAl43−x, 27 wt.% of Y2Cr8−xAl16+x, 16 wt.% of Al, 13 wt.% of YAl3, and traces of Y2O3. Structure refinement converged at Rwp = 2.0% and RB = 3.5, 3.6% resp. for a total of 78 parameters and 1190 reflections.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


2009 ◽  
Vol 79-82 ◽  
pp. 593-596
Author(s):  
Feng Sun ◽  
Yan Sheng Yin

The ferroelectric ceramic BaTiO3 was synthesized at 1000 °C for 5 h. The structure of the system under study was refined on the basis of X-ray powder diffraction data using the Rietveld method. The system crystallizes in the space group P4mm(99). The refinement of instrumental and structural parameters led to reliable values for the Rp, Rwp and Rexp.We use the TOPAS software of Bruker AXS to refine this ceramic powders and show its conformation


2012 ◽  
Vol 194 ◽  
pp. 5-9 ◽  
Author(s):  
Yuriy Verbovytskyy ◽  
Antonio Pereira Gonçalves

Seven new ternary RZn1+xGa3-x (R = Ce, Pr, Nd, Sm, Ho and Er) and R5Zn2Ga17 (R = Ce) phases are synthesized for the first time. Their crystal structures are solved on basis of X-ray powder diffraction data. The above mentioned compounds belong to the BaAl4 (space group I4/mmm) and Rb5Hg19 (space group I4/m) structure types. Details of the structure of the Ce5Zn2Ga17 compound and relationship with RZn2-xGa2+x (BaAl4 type) and R3Zn8-xGa3+x (La3Al11 type) are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document