Composite of magnetic carbon quantum dot-supported ionic liquid and Cu-BDC (CCDC no. 687690) MOF: A triple catalytic composite for chemical transformations

2022 ◽  
pp. 122888
Author(s):  
Samahe Sadjadi ◽  
Fatemeh Koohestani
Nanoscale ◽  
2020 ◽  
Vol 12 (40) ◽  
pp. 20965-20972
Author(s):  
Yiqing Wu ◽  
Yongyuan Ren ◽  
Jiangna Guo ◽  
Ziyang Liu ◽  
Lili Liu ◽  
...  

The prepared ionic liquid-based carbon quantum dot-doped gels were fabricated into sandwich-type light-force synergistic responsive devices for information encryption.


2021 ◽  
Author(s):  
Tao Zeng ◽  
Zhi Yang ◽  
Jiabing Liang ◽  
Ya Lin ◽  
Yankun Cheng ◽  
...  

Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating...


2021 ◽  
Author(s):  
Xianfeng Zhang ◽  
Zongqun Li ◽  
Shaowen Xu ◽  
Yaowen Ruan

TiO2/CQD composites were synthesized through carbon quantum dots covalently attached to the surface of hollow TiO2 spheres for visible light photocatalytic degradation of organics.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 359
Author(s):  
László Koók ◽  
Piroska Lajtai-Szabó ◽  
Péter Bakonyi ◽  
Katalin Bélafi-Bakó ◽  
Nándor Nemestóthy

Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.


Sign in / Sign up

Export Citation Format

Share Document