Acute Hyperglycemia Exacerbates Hemorrhagic Transformation after Embolic Stroke and Reperfusion with tPA: A Possible Role of TXNIP-NLRP3 Inflammasome

Author(s):  
Mohd. Salman ◽  
Saifudeen Ismael ◽  
Li Lexiao ◽  
Heba A. Ahmed ◽  
Michelle A. Puchowicz ◽  
...  
Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Sherif Hafez ◽  
Mohammed Abdelsaid ◽  
Nasrul Hoda ◽  
Maha Coucha ◽  
Susan Fagan ◽  
...  

Acute hyperglycemia (HG) worsens stroke outcomes and increases the risk of cerebral hemorrhage especially with the co-administration of tissue plasminogen activator (tPA). MMP3 mediates tPA-induced hemorrhagic transformation (HT) after stroke. However, the role of MMP3 in hyperglycemic stroke is unknown. The working hypothesis of the current study is that HG upregulates MMP3 activity and worsens vascular injury after stroke and this response is independent of the method of reperfusion. Methods: Control and mildly HG rats (160-200 mg/dl, achieved by 30% glucose injection (i.p.) 15 min prior to surgery, n=7-9/group) were subjected to either 90 min middle cerebral artery (MCA) suture occlusion and 22.5 h reperfusion, or to humanized thromboembolic stroke. At 24 h, neurological deficit, infarct size, edema, HT occurrence rate (HT index) and tissue hemoglobin (Hb) were measured. MMP3 activity in isolated cerebral microvasculature and/or brain homogenates was quantified by FRET assay. In addition, MMP-3 expression was assessed in brain microvascular endothelial cells (BVEC) subjected to 90 min hypoxia followed by 22.5 h reoxygenation. Results: While HG did not increase infarct size when compared to control animals, this mild elevation in blood glucose (BG) significantly increased vascular injury indicated by HT index, edema and Hb content in ischemic hemispheres . This was associated with a significant increase in MMP3 activity in both cerebral micro-vasculature and brain homogenates (Table, *p<0.05 vs control). In vitro, the combination of hypoxia and HG has increased MMP3 expression more than each alone (*p<0.05 vs control). Conclusion: Even mild elevations in BG increased MMP3 activity and augmented vascular injury following ischemic stroke. Our findings suggest that MMP3 might be playing an important role in worsening the outcomes in hyperglycemic stroke and MMP3 inhibition may be a potential therapeutic target.


Author(s):  
Ishita Sharma ◽  
Tapan Behl ◽  
Simona Bungau ◽  
Monika Sachdeva ◽  
Arun Kumar ◽  
...  

Abstract:: Angina pectoris, associated with coronary artery disease, a cardiovascular disease where, pain is caused by adverse oxygen supply in myocardium, resulting in contractility and discomfort in chest. Inflammasomes, triggered by stimuli due to infection and cellular stress have identified to play a vital role in the progression of cardiovascular disorders and thus, causing various symptoms like angina pectoris. Nlrp3 inflammasome, a key contributor in the pathogenesis of angina pectoris, requires activation and primary signaling for the commencement of inflammation. Nlrp3 inflammasome elicit out an inflammatory response by emission of pro inflammatory cytokines by ROS (reactive oxygen species) production, mobilization of K+ efflux and Ca2+ and by activation of lysosome destabilization that eventually causes pyroptosis, a programmed cell death process. Thus, inflammasome are considered to be one of the factors involved in the progression of coronary artery diseases and have an intricate role in development of angina pectoris.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1231-1231
Author(s):  
Giulio Pasinetti

Abstract Objectives Chronic stress activates danger-associated molecular patterns (DAMPs), stimulating the NLRP3 inflammasome. NLRP3 activation triggers the release of pro-inflammatory cytokine IL-1β. The activity of the NLRP3 inflammasome propagates pro-inflammatory signaling cascades implicated in the onset of depression. Our previous studies show that polyphenolic compounds were found to ameliorate stress induced depression in mouse models. However, the relevant mechanism has not been identified. This study examined the effect of administering polyphenols on DAMP signaling in enriched mice microglia. Methods This study examined the effect of administering polyphenols on DAMP signaling in mice microglia. To recapitulate stress-induced depression, mice underwent chronic unpredictable stress (CUS). Microglia were isolated at various time points throughout the CUS protocol. We also assessed long-term persistent changes after CUS and susceptibility to subthreshold unpredictable stress (US) re-exposure. Results Interestingly, the development of US – induced depression and anxiety depended upon a previous exposure to CUS. We found that CUS caused robust upregulation of IL-1β mRNA in enriched microglia, an effect that persists for up to 4 weeks following CUS exposure. Following the subthreshold US re-exposure, we observed the upregulation of pro- IL-1β as well as pro-receptor for advanced glycation end products (RAGE). Toll-like receptor 4 (TLR-4) was not. We also observed an increase in RAGE mRNA expression when mice were exposed to US prior to the start of the CUS paradigm. Importantly, a primary exposure to US, was sufficient to increase RAGE mRNA expression. We found that polyphenol administration significantly improved CUS-induced depressive-like phenotypes and also reversed neuroinflammation in mice. Treatment with dietary flavonoids prevented upregulation of IL-1β, RAGE mRNA, which reflects the ability of polyphenols that may have begun following the primary exposure to US. Conclusions Taken all together, the results provide evidence of the role of dietary polyphenols in preventing persistent microglial activation, which has been shown to result in reduced long term vulnerability to depressive-like behaviors following expose to chronic stress. Funding Sources This study was supported by a P50 CARBON Center grant from the NCCIH/ODS.


Author(s):  
Fillipe M. de Araújo ◽  
Lorena Cuenca-Bermejo ◽  
Emiliano Fernández-Villalba ◽  
Silvia L. Costa ◽  
Victor Diogenes A. Silva ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P&lt;0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P&lt;0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P&lt;0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P&lt;0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P&lt;0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P&lt;0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P&lt;0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P&lt;0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


2021 ◽  
Vol 6 (2) ◽  
pp. 137-150
Author(s):  
Adolfo G. Mauro ◽  
Aldo Bonaventura ◽  
Alessandra Vecchié ◽  
Eleonora Mezzaroma ◽  
Salvatore Carbone ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document