Detection and Differentiation of Murine Leukemia Virus (MLV) and Murine Stem Cell Virus (MSCV) and therefrom Derived Nucleic Acids

2021 ◽  
pp. 114316
Author(s):  
Wolfram Volkwein ◽  
Melanie Pavlovic ◽  
Martina Anton ◽  
Maren Haase ◽  
Thorsten Stellberger ◽  
...  
1990 ◽  
Vol 10 (8) ◽  
pp. 4045-4057 ◽  
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

A negative regulatory element (NRE) spanning the tRNA primer-binding site (PBS) of Moloney murine leukemia virus (M-MuLV) mediates repression of M-MuLV expression specifically in embryonal carcinoma (EC) cells. We precisely defined the element by base-pair mutagenesis to an 18-base-pair segment of the tRNA PBS and showed that the element also restricted expression when moved upstream of the long terminal repeat. A DNA-binding activity specific for the M-MuLV NRE was detected in vitro by using crude EC nuclear extracts in exonuclease III protection assays. Binding was strongly correlated with repression in EC cells. Mutations within the NRE that relieved repression disrupted binding activity. Also, nuclear extracts prepared from permissive, differentiated EC cell cultures showed reduced binding activity for the NRE. These results indicate the presence of a stem cell-specific repressor that extinguishes M-MuLV expression via the NRE at the tRNA PBS.


1990 ◽  
Vol 10 (8) ◽  
pp. 4045-4057
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

A negative regulatory element (NRE) spanning the tRNA primer-binding site (PBS) of Moloney murine leukemia virus (M-MuLV) mediates repression of M-MuLV expression specifically in embryonal carcinoma (EC) cells. We precisely defined the element by base-pair mutagenesis to an 18-base-pair segment of the tRNA PBS and showed that the element also restricted expression when moved upstream of the long terminal repeat. A DNA-binding activity specific for the M-MuLV NRE was detected in vitro by using crude EC nuclear extracts in exonuclease III protection assays. Binding was strongly correlated with repression in EC cells. Mutations within the NRE that relieved repression disrupted binding activity. Also, nuclear extracts prepared from permissive, differentiated EC cell cultures showed reduced binding activity for the NRE. These results indicate the presence of a stem cell-specific repressor that extinguishes M-MuLV expression via the NRE at the tRNA PBS.


1979 ◽  
Vol 150 (2) ◽  
pp. 392-405 ◽  
Author(s):  
K Huebner ◽  
N Tsuchida ◽  
C Green ◽  
C M Croce

Murine teratocarcinoma stem cells are nonpermissive for productive infection by a variety of DNA (polyoma and SV40 virus) and RNA (murine leukemia and sarcoma virus) tumor viruses whereas differentiated murine cells derived from the stem cells are permissive for productive (or abortive in the case of SV40) infection by these same viruses. The block to productive infection by these oncogenic viruses is at a postpenetration step in the replication cycle of these viruses but the precise level of the block has not been established for any of these viruses. In this report we describe teratocarcinoma-derived stem and differentiated cell lines which should be especially useful in determining the level of the block to replication of ecotropic murine leukemia virus in murine teratocarcinoma stem cells. The stem cell line, OTT6050AF1 BrdU, which is completely nonpermissive to productive infection by Moloney murine leukemia virus and consists of 97% pluripotent stem cells, contains DNA copies of an RNA tumor virus which is indistinguishable from the N-tropic murine leukemia virus of AKR mice. The stem cells are negative for expression of viral reverse transcriptase, p30 and gp69/71 and no virus is found by XC plaque assay or other biological tests. Differentiated cells established from the same teratocarcinoma tumor are 100% positive for viral gp69/71, p30, and produce large amounts of reverse transcriptase activity and N-tropic virus as detected by biological assay. The virus isolated from the differentiated cells is closely related, if not identical to AKR N-tropic virus by nucleic acid hybridization studies and is thus not an endogenous virus of the 129 strain of mice. The teratocarcinoma tumor from which the cell lines were established had been carried in 129 mice and perhaps at some time in the mouse passage history the tumors were infected (nonproductively) with the N-tropic virus. Regardless of the origin of this viral DNA, the OTT6050A derived stem and differentiated cell lines should be extremely useful in defining in stem cells the step at which ecotropic murine leukemia virus replication is blocked.


Virology ◽  
1993 ◽  
Vol 193 (2) ◽  
pp. 690-699 ◽  
Author(s):  
Geraldine Kempler ◽  
Breton Freitag ◽  
Brent Berwin ◽  
Oliver Nanassy ◽  
Eric Barklis

Author(s):  
L. Z. de Tkaczevski ◽  
E. de Harven ◽  
C. Friend

Despite extensive studies, the correlation between the morphology and pathogenicity of murine leukemia viruses (MLV) has not yet been clarified. The virus particles found in the plasma of leukemic mice belong to 2 distinct groups, 1 or 2% of them being enveloped A particles and the vast majority being of type C. It is generally believed that these 2 types of particles represent different phases in the development of the same virus. Particles of type A have been thought to be an earlier form of type C particles. One of the tissue culture lines established from Friend leukemia solid tumors has provided the material for the present study. The supernatant fluid of the line designated C-1A contains an almost pure population of A particles as illustrated in Figure 1. The ratio is, therefore, the reverse of what is unvariably observed in the plasma of leukemic mice where C particles predominate.


Author(s):  
Ray A. Weigand ◽  
Gregory C. Varjabedian

We previously described the intracellular localization of murine mammary tumor virus (MuMTV) p28 protein in thin sections (1). In that study, MuMTV containing cells fixed in 3% paraformaldehyde plus 0.05% glutaraldehyde were labelled after thin sectioning using ferritin-antiferritin in an unlabelled antibody technique. We now describe the labelling of murine leukemia virus (MuLV) particles using the unlabelled antibody technique coupled to ferritin-Fab antiferritin. Cultures of R-MuLV in NIH/3T3 cells were grown to 90% confluence (2), fixed with 2% paraformaldehyde plus 0.5% glutaraldehyde in 0.1 M cacodylate at pH 7.2, postfixed with buffered 17 OsO4, dehydrated with a series of etha-nols, and embedded in Epon. Thin sections were collected on nickel grids, incubated in 107 H2O2, rinsed in HEPES buffered saline, and subjected to the immunoferritin labelling procedure. The procedure included preincubation in 27 egg albumin, a four hour incubation in goat antisera against purified gp69/71 of MuLV (3) (primary antibody), incubation in F(ab’)2 fragments of rabbit antisera to goat IgG (secondary antibody), incubation in apoferritin, incubation in ferritin-Fab ferritin, and a brief fixation with 2% glutaraldehyde. The sections were stained with uranyl acetate and examined in a Siemens IA electron microscope at an accelerating voltage of 60 KV.


Sign in / Sign up

Export Citation Format

Share Document