Magnetic Multiplex Loop Mediated Isothermal Amplification (MM-LAMP) technique for simultaneous detection of dengue and chikungunya virus

2022 ◽  
Vol 300 ◽  
pp. 114407
Author(s):  
Sandeep Kumar ◽  
Supriya Sharma ◽  
Sarita Kumari ◽  
Veena Pande ◽  
Deepali Savargaonkar ◽  
...  
2020 ◽  
Vol 21 (22) ◽  
pp. 8741
Author(s):  
Güven Edgü ◽  
Lena Julie Freund ◽  
Stefanie Hartje ◽  
Eckhard Tacke ◽  
Hans-Reinhard Hofferbert ◽  
...  

Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV). The appearance of corky ringspot symptoms on tubers prior to commercialization results in ≈ 45% of the tubers being downgraded in quality and value, while ≈ 55% are declared unsaleable. To improve current disease management practices, we have developed simple diagnostic methods for the reliable detection of TRV without RNA purification, involving minimalized sample handling (mini), subsequent improved colorimetric loop-mediated isothermal amplification (LAMP), and final verification by lateral-flow dipstick (LFD) analysis. Having optimized the mini-LAMP-LFD approach for the sensitive and specific detection of TRV, we confirmed the reliability and robustness of this approach by the simultaneous detection of TRV and other harmful viruses in duplex LAMP reactions. Therefore, our new approach offers breeders, producers, and farmers an inexpensive and efficient new platform for disease management in potato breeding and cultivation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254029
Author(s):  
Thanawat Sridapan ◽  
Wanida Tangkawsakul ◽  
Tavan Janvilisri ◽  
Taradon Luangtongkum ◽  
Wansika Kiatpathomchai ◽  
...  

Development of a simple, rapid and specific assay for the simultaneous detection of Campylobacter spp. and Salmonella spp. based on duplex loop-mediated isothermal amplification (d-LAMP), combined with lateral-flow biosensor (LFB) is reported herein. LAMP amplicons of both pathogens were simultaneously amplified and specifically differentiated by LFB. The specificity of the d-LAMP-LFB was evaluated using a set of 68 target and 12 non-target strains, showing 100% inclusivity and exclusivity. The assay can simultaneously detect Campylobacter and Salmonella strains as low as 1 ng and 100 pg genomic DNA per reaction, respectively. The lowest inoculated detection limits for Campylobacter and Salmonella species in artificially contaminated chicken meat samples were 103 CFU and 1 CFU per 25 grams, respectively, after enrichment for 24 h. Furthermore, compared to culture-based methods using field chicken meat samples, the sensitivity, specificity and accuracy of d-LAMP- LFB were 95.6% (95% CI, 78.0%-99.8%), 71.4% (95% CI, 29.0%-96.3%) and 90.0% (95% CI, 73.4%-97.8%), respectively. The developed d-LAMP-LFB assay herein shows great potentials for the simultaneous detection of the Campylobacter and Salmonella spp. and poses a promising alternative approach for detection of both pathogens with applications in food products.


2007 ◽  
Vol 71 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Hiroshi Iseki ◽  
Andy Alhassan ◽  
Naomi Ohta ◽  
Oriel M.M. Thekisoe ◽  
Naoaki Yokoyama ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 897
Author(s):  
Lavel Chinyama Moonga ◽  
Kyoko Hayashida ◽  
Naoko Kawai ◽  
Ryo Nakao ◽  
Chihiro Sugimoto ◽  
...  

Spotted fever group (SFG) rickettsiae causes febrile illness in humans worldwide. Since SFG rickettsiosis’s clinical presentation is nonspecific, it is frequently misdiagnosed as other febrile diseases, especially malaria, and complicates proper treatment. Aiming at rapid, simple, and simultaneous detection of SFG Rickettsia spp. and Plasmodium spp., we developed a novel multiple pathogen detection system by combining a loop-mediated isothermal amplification (LAMP) method and dipstick DNA chromatography technology. Two primer sets detecting SFG Rickettsia spp. and Plasmodium spp. were mixed, and amplified products were visualized by hybridizing to dipstick DNA chromatography. The multiplex LAMP with dipstick DNA chromatography distinguished amplified Rickettsia and Plasmodium targeted genes simultaneously. The determined sensitivity using synthetic nucleotides was 1000 copies per reaction for mixed Rickettsia and Plasmodium genes. When genomic DNA from in vitro cultured organisms was used, the sensitivity was 100 and 10 genome equivalents per reaction for Rickettsia monacensis and Plasmodium falciparum, respectively. Although further improvement will be required for more sensitive detection, our developed simultaneous diagnosis technique will contribute to the differential diagnosis of undifferentiated febrile illness caused by either SFG Rickettsia spp. or Plasmodium spp. in resource-limited endemic areas. Importantly, this scheme is potentially versatile for the simultaneous detection of diverse infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document