scholarly journals A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles

2015 ◽  
Vol 86 ◽  
pp. 11-20 ◽  
Author(s):  
Bai Li ◽  
Zhijiang Shao
Author(s):  
Yuki WATANABE ◽  
Yuichi SAITO ◽  
Masahiko TANIMOTO ◽  
Haruo NAKATA ◽  
Yosuke ISHIWATARI ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Doopalam Tuvshinjargal ◽  
Byambaa Dorj ◽  
Deok Jin Lee

A new reactive motion planning method for an autonomous vehicle in dynamic environments is proposed. The new dynamic motion planning method combines a virtual plane based reactive motion planning technique with a sensor fusion based obstacle detection approach, which results in improving robustness and autonomy of vehicle navigation within unpredictable dynamic environments. The key feature of the new reactive motion planning method is based on a local observer in the virtual plane which allows the effective transformation of complex dynamic planning problems into simple stationary in the virtual plane. In addition, a sensor fusion based obstacle detection technique provides the pose estimation of moving obstacles by using a Kinect sensor and a sonar sensor, which helps to improve the accuracy and robustness of the reactive motion planning approach in uncertain dynamic environments. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles even in hostile environments where conventional method failed.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Peng Cai ◽  
Xiaokui Yue ◽  
Hongwen Zhang

Abstract In this paper, we present a novel sampling-based motion planning method in various complex environments, especially with narrow passages. We use online the results of the planner in the ADD-RRT framework to identify the types of the local configuration space based on the principal component analysis (PCA). The identification result is then used to accelerate the expansion similar to RRV around obstacles and through narrow passages. We also propose a modified bridge test to identify the entrance of a narrow passage and boost samples inside it. We have compared our method with known motion planners in several scenarios through simulations. Our method shows the best performance across all the tested planners in the tested scenarios.


2021 ◽  
Author(s):  
Xuehao Sun ◽  
Shuchao Deng ◽  
Baohong Tong ◽  
Shuang Wang ◽  
Shuai Ma ◽  
...  

Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


Sign in / Sign up

Export Citation Format

Share Document