Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines

Life Sciences ◽  
2021 ◽  
pp. 120170
Author(s):  
Daehwan Kim ◽  
Wookbong Kwon ◽  
Song Park ◽  
Wansoo Kim ◽  
Jin-Kyu Park ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Karisa C Schreck ◽  
Amy N Allen ◽  
Jiawan Wang ◽  
Christine A Pratilas

Abstract Background RAS effector signaling pathways such as PI3K/mTOR and ERK are frequently dysregulated in glioblastoma. While small molecule targeted therapies against these pathways have appeared promising in preclinical studies, they have been disappointing in clinical trials due to toxicity and de novo and adaptive resistance. To identify predictors of glioblastoma sensitivity to dual pathway inhibition with mTORC1/2 and MEK inhibitors, we tested these agents, alone and in combination, in a cohort of genomically characterized glioblastoma cell lines. Methods Seven genomically characterized, patient-derived glioblastoma neurosphere cell lines were evaluated for their sensitivity to the dual mTORC1/2 kinase inhibitor sapanisertib (MLN0128, TAK-228) alone or in combination with the MEK1/2 inhibitor trametinib (GSK1120212), using assessment of proliferation and evaluation of the downstream signaling consequences of these inhibitors. Results Sapanisertib inhibited cell growth in neurosphere lines, but induced apoptosis only in a subset of lines, and did not completely inhibit downstream mTOR signaling via ribosomal protein S6 (RPS6). Growth sensitivity to MEK inhibitor monotherapy was observed in a subset of lines defined by loss of NF1, was predicted by an ERK-dependent expression signature, and was associated with effective phospho-RPS6 inhibition. In these lines, combined MEK/mTOR treatment further inhibited growth and induced apoptosis. Combined MEK and mTOR inhibition also led to modest antiproliferative effects in lines with intact NF1 and insensitivity to MEK inhibitor monotherapy. Conclusions These data demonstrate that combined MEK/mTOR inhibition is synergistic in glioblastoma cell lines and may be more potent in NF1-deficient glioblastoma.


Tsitologiya ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
L. N. Kiseleva ◽  
◽  
A. V. Kartashev ◽  
N. L. Vartanyan ◽  
A. A. Pinevich ◽  
...  

2003 ◽  
Vol 89 (11) ◽  
pp. 2122-2132 ◽  
Author(s):  
N Cordes ◽  
B Hansmeier ◽  
C Beinke ◽  
V Meineke ◽  
D van Beuningen

2008 ◽  
Vol 270 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Jens Strelau ◽  
Corina Schmeer ◽  
Heike Peterziel ◽  
Tina Sackmann ◽  
Christel Herold-Mende ◽  
...  

2008 ◽  
Vol 7 (3) ◽  
pp. 364-373 ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Teresa Güttler ◽  
Sabrina Berger ◽  
Astrid Katzer ◽  
Michael Flentje

Sign in / Sign up

Export Citation Format

Share Document