scholarly journals New fat replacement agent comprised of gelatin and soluble dietary fibers derived from date seed powder in beef burger preparation

LWT ◽  
2022 ◽  
pp. 113051
Author(s):  
Rowida Younis Essa ◽  
Essam Mohamed Elsebaie
2018 ◽  
Vol 38 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Camila Vespúcio BIS-SOUZA ◽  
Jenifer Mayara Monari HENCK ◽  
Andrea Carla da Silva BARRETTO
Keyword(s):  
Low Fat ◽  

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 737 ◽  
Author(s):  
Fatma Bouaziz ◽  
Amal Ben Abdeddayem ◽  
Mohamed Koubaa ◽  
Raoudha Ellouz Ghorbel ◽  
Semia Ellouz Chaabouni

The aim of this work was to investigate the effect of date seed water-soluble polysaccharides (DSP) and hemicellulose (DSH) as dietary fiber sources in enhancing the wheat bread’s quality. DSP and DSH were extracted from the three date seed varieties Deglet Nour, Ghars Souf, and Allig. The extraction yields ranged from 3.8% to 6.14% and from 13.29% to 18.8%, for DSP and DSH, respectively. DSP and DSH showed interesting functional properties and were incorporated at 0.5% and 0.75% (w/w) in wheat flour with low bread-making quality (FLBM). The results showed that the addition of 0.75% DSH significantly improved the alveograph profile of the dough, and in a more efficient way than that of DSP. Furthermore, bread evaluation revealed that the addition of DSH considerably improved the volume (by 24.22%) and the texture profile of bread (decrease of the hardness and chewiness by 41.54% and 33.81%, respectively), compared to control bread (prepared with FLBM). A sensory analysis showed that the better overall acceptability was found for bread supplemented with DSH. Results in this work demonstrate that hemicellulose fraction extracted from date seeds (DSH) and added with a level of 0.75% to FLBM represents the component that improved bread quality the best.


2010 ◽  
Vol 20 (1) ◽  
pp. 181-187
Author(s):  
F. A. Khalafalla ◽  
Fatma H. M. Ali ◽  
A. H. Abdel-Azeem ◽  
Gehan M. A. Kassem ◽  
M. M. T. Emara
Keyword(s):  

Nutrition ◽  
2021 ◽  
pp. 111217
Author(s):  
Esther Santana Vaz Rezende ◽  
Glaucia Carielo Lima ◽  
Maria Margareth Veloso Naves
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jie Xu ◽  
Rongying Xu ◽  
Menglan Jia ◽  
Yong Su ◽  
Weiyun Zhu

Abstract Background Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis. Results The results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin. Conclusion The results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 148-150
Author(s):  
H Armstrong ◽  
R Valcheva ◽  
D Santer ◽  
Z Zhang ◽  
A Rieger ◽  
...  

Abstract Background Dietary fibers pass through the bowel undigested and are fermented within the intestine by microbes, typically promoting gut health. However, many IBD patients describe experiencing sensitivity to fibers. β-glucan, found on the surface of fungal cells during fungal infection, has been shown to bind to fiber receptors, such as Dectin-1, on host immune cells, resulting in a pro-inflammatory response. These fungal fibres share properties with dietary fibers. Aims As an altered gut microbial composition has been associated with IBD, we hypothesized that the loss of fiber-fermenting microbes populating the gut in IBD could lead to dietary fibers not being efficiently broken down into their beneficial biproducts (e.g. short chain fatty acids; SCFA), resulting in binding of intact fibers to pro-inflammatory host cell receptors. Methods Immune and epithelial cell lines and colonic biopsies cultured ex vivo were incubated with oligofructose or inulin (5g/L), or pre-fermented fibers (24hr anaerobic fermentation). Immune responses were measured by cytokine secretion (ELISA), and expression (qPCR). Barrier integrity was measured by transepithelial resistance (TEER). Food frequency questionnaire (FFQ) data of patient fiber consumption were correlated with gut microbes (shotgun sequencing) and immune responses to fiber in patient biopsies. Results Unfermented oligofructose induced IL-1β secretion in leukocytes (macrophage, T cell, neutrophil) and in colon biopsies from pediatric Crohn disease (CD; n=38) and ulcerative colitis (UC; n=20) patients cultured ex vivo, but not in non-IBD patients (n=21). IL-1β secretion was greater in patients with more severe disease. Pre-fermentation of oligofructose by whole-microbe intestinal washes from non-IBD patients or remission patients reduced secretion of IL-1β, while whole microbe intestinal washes from severe IBD patients were unable to ferment oligofructose or reduce cytokine secretion. Fiber effects on IL-1β secretion in biopsies positively correlated with effects on barrier integrity in T84 cells. Fiber-associated immune responses in patient biopsies cultured ex vivo (ELISA) correlated with fiber avoidance (FFQ) and gut microbiome (sequencing) in matching patient samples. Conclusions Our findings demonstrate that intolerance and avoidance of prebiotic fibers in select IBD patients is associated with the inability to ferment these fibers, leading to pro-inflammatory immune responses and intestinal barrier disruption. This highlights select disease state scenarios, in which administration of fermentable fibers should be avoided and tailored dietary interventions should be considered in IBD patients. Funding Agencies CIHRWeston Foundation


Sign in / Sign up

Export Citation Format

Share Document