Thermoplastic elastomer based on high impact polystyrene/ethylene-vinyl acetate copolymer/waste ground rubber tire powder composites compatibilized by styrene-butadiene-styrene block copolymer

2012 ◽  
Vol 136 (2-3) ◽  
pp. 1124-1129 ◽  
Author(s):  
Zhaobo Wang ◽  
Yixin Zhang ◽  
Fanglin Du ◽  
Xin Wang
2019 ◽  
Vol 33 (6) ◽  
pp. 851-864 ◽  
Author(s):  
Yujiao Shi ◽  
Yingtao Sun ◽  
Zhaobo Wang

Super-hydrophobic and super-oleophilic surface based on high-density polyethylene/styrene–butadiene–styrene block copolymer/waste ground rubber tire powder thermoplastic elastomer (TPE) was successfully prepared while metallographic sandpaper was used as a template. Field emission scanning electron microscope study showed that the molded TPE surface with W7 grade sandpaper possessed the rough microstructure; moreover, the micrometer scale strips resulting from the plastic deformation of TPE matrix could be observed obviously, leading to the increasing surface roughness. Wettability tests showed that the molded TPE surfaces with series sandpapers exhibited the hydrophobic and super-oleophilic properties; moreover, the surface molded with W7 grade sandpaper showed the remarkable super-hydrophobic and super-oleophilic properties.


2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


2017 ◽  
Vol 50 (3) ◽  
pp. 241-255 ◽  
Author(s):  
Seyfullah Keyf

In this article, 50/70 penetration grade TUPRAS bitumen was modified. Reactive elastomeric terpolymer (Elvaloy RET; DuPont Company), ethylene vinyl acetate (EVA) and styrene–butadiene–styrene (SBS) polymers were used in bitumen modification. Set hours of the tests were applied to samples taken from the obtained modified bitumen mixture. Varying amount of reactive ethylene terpolymer with weight ratios of 0.5%, 1.0%, 1.5%, 2.0% and 2.5% were introduced to the mixture of raw bitumen with 1.0% SBS and 1.0% EVA. Penetration, penetration index, softening point, ductility and elastic recovery tests were performed with these modified bitumen and raw bitumen. The samples of raw bitumen and modified bitumens of 2.0% Elvaloy RET, 1.0% SBS and 1.0% EVA were investigated by means of IR spectroscopy. The raw bitumen was modified with SBS, EVA and RET, and it was determined that penetration and ductility values were decreased while penetration index, softening point and elastic recovery were increased. The purpose of this study is to research the improving properties of 50/70 penetration grade–modified bitumen used in highways of Turkey. The most important characteristics (such as softening point, penetration and % elastic recovery) of new polymer-modified bitumen (NPMB) containing 2.5% EVA, 1% RET and 1% SBS were compared with eight different types of polymer-modified bitumens in Turkey (TPMB). NPMB provided all required parameters (softening point, penetration and % elastic recovery) for five different types of TPMBs (TPMB 70-16, TPMB 70-22, TPMB 76-16, TPMB 76-22 and TPMB 82-16).


1991 ◽  
Vol 64 (3) ◽  
pp. 469-480 ◽  
Author(s):  
E. N. Kresge

Abstract Thermoplastic elastomers based on blends of polyolefins are an important family of engineering materials. Their importance arises from a combination of rubbery properties along with their thermoplastic nature in contrast to thermoset elastomers. The development of polyolefin thermoplastic elastomer blends follows somewhat that of thermoplastic elastomers based on block copolymers such as styrene-butadiene-styrene triblock copolymer and multisegmented polyurethane thermoplastic elastomers which were instrumental in showing the utility of thermoplastic processing methods. Polyoleflns are based on coordination catalysts that do not easily lend themselves to block or multisegmented copolymer synthesis. However, since polyolefins have many important attributes favorable to useful elastomeric systems, there was considerable incentive to produce thermoplastic elastomers based on simple α-olefins by some means. Low density, chemical stability, weather resistance, and ability to accept compounding ingredients without compromising physical properties are highly desirable. These considerations led to the development of polyolefin thermoplastic elastomer blends, and two types are now widely used: blends of ethylene-propylene rubber (EPM) with polypropylene (PP) and blends of EPDM and PP in which the rubber phase is highly crosslinked. This article reviews the nature of these blends. Both physical and Theological properties are very dependent on the morphology and crosslink density of the blend system. Moreover, the usefulness of practical systems depends extensively on compounding technology based on added plasticizers and fillers.


Sign in / Sign up

Export Citation Format

Share Document