Kinetics of Oxidation and Surface Oxide cracking behaviours of Weld metal and Heat affected-Zones of SMA weldment in thermal cyclic environment

2021 ◽  
pp. 130042
Author(s):  
Ravindra Kumar
1987 ◽  
Vol 52 (6) ◽  
pp. 1386-1396 ◽  
Author(s):  
Ján Mocák ◽  
Michal Németh ◽  
Mieczyslaw Lapkowski ◽  
Jerzy W. Strojek

A spectrocoulometric macrocell with a direct-view optical probe was designed and constructed, where the optical signal is transferred by light-conducting glass or quartz fibres permitting to work at wavelengths above 410 or 300 nm. The method of measurement on the proposed equipment is described; it was tested in the study of the mechanism and kinetics of oxidation of Fe(bipy)32+ ions (bipy = 2,2'-bipyridyl) with the use of potentiostatic coulometric electrolysis with open-circuit relaxation at a suitable time. The primary product of electrolysis, Fe(bipy)33+, undergoes a follow-up hydrolytic reaction with the formation of a binuclear complex. The rate constant of the reaction of the first order involves the contributions, kBi, from all bases present in solution; the corresponding values for H2O, OH-, bipy, and CH3COO- ions at a ionic strength 0·5 mol dm-3 and 25 °C were determined as kOH = (5·0 ± 0·6) . 105 mol-1 dm3 s-1, kbipy = (1·3 ± 0·2) . 10-1 mol-1 dm3 s-1, kAc = (5·8 ± 1·0) . 10-2 mol-1 dm3 s-1, and kH2O is not significant with respect to experimental errors.


1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


1982 ◽  
Vol 47 (8) ◽  
pp. 2087-2096 ◽  
Author(s):  
Bohumil Bernauer ◽  
Antonín Šimeček ◽  
Jan Vosolsobě

A two dimensional model of a tabular reactor with the catalytically active wall has been proposed in which several exothermic catalytic reactions take place. The derived dimensionless equations enable evaluation of concentration and temperature profiles on the surface of the active component. The resulting nonlinear parabolic equations have been solved by the method of orthogonal collocations.


1993 ◽  
Vol 58 (5) ◽  
pp. 1001-1006 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko

The kinetics of oxidation of [Co(en)2SCH2COO]+ with S2O82- was studied in water-methanol and water-tert-butyl alcohol mixtures. Changes in the reaction activation parameters ∆H≠ and ∆S≠ with varying concentration of the co-solvent depend on the kind of the latter, which points to a significant role of salvation effects. The solvation effect on the reaction is discussed based on a comparison of the transfer functions ∆Ht0, ∆St0 and ∆Gt0 for the initial and transition states with the changes in the activation parameters accompanying changes in the CO-solvent concentration. The transfer enthalpies of the reactant were obtained from calorimetric measurements.


1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


2012 ◽  
Vol 392 ◽  
pp. 137-140
Author(s):  
Ritu Mishra ◽  
Subrata Mukhopadhyay ◽  
Rupendranath Banerjee

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Baranowska ◽  
Zuzanna Koziara ◽  
Klaudia Suliborska ◽  
Wojciech Chrzanowski ◽  
Michael Wormstone ◽  
...  

AbstractFood synergy concept is suggested to explain observations that isolated antioxidants are less bioactive than real foods containing them. However, mechanisms behind this discrepancy were hardly studied. Here, we demonstrate the profound impact of interactions between two common food flavonoids (individual: aglycones quercetin—Q and naringenin—N− or their glycosides rutin—R and naringin—N+ vs. mixed: QN− and RN+) on their electrochemical properties and redox-related bioactivities. N− and N+ seemed weak antioxidants individually, yet in both chemical and cellular tests (DPPH and CAA, respectively), they increased reducing activity of mixtures synergistically. In-depth measurements (differential pulse voltammetry) pointed to kinetics of oxidation reaction as decisive factor for antioxidant power. In cellular (HT29 cells) tests, the mixtures exhibited properties of a new substance rather than those of components. Pure flavonoids did not influence proliferation; mixtures stimulated cell growth. Individual flavonoids tended to decrease global DNA methylation with growing concentration; this effect was more pronounced for mixtures, but not concentration-dependent. In nutrigenomic studies, expression of gene set affected by QN− differed entirely from common genes modulated by individual components. These results question the current approach of predicting bioactivity of mixtures based on research with isolated antioxidants.


Sign in / Sign up

Export Citation Format

Share Document