Critical review of off-axial nozzle and coaxial nozzle for powder metal deposition

Author(s):  
S. Pratheesh Kumar ◽  
S. Elangovan ◽  
R. Mohanraj ◽  
B. Srihari
Author(s):  
Doglas Negri ◽  
Gustavo Reis de Ascencao ◽  
Saulo Melotti ◽  
Jhonattan Gutjahr

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Piyush Pant ◽  
Dipankar Chatterjee ◽  
Sudip Kumar Samanta ◽  
Aditya Kumar Lohar

Abstract The work explores the powder transport process, using numerical simulation to address the dynamics of the powder flow in an in-house built multi-channel coaxial nozzle of a direct metal deposition (DMD) system. The fluid turbulence is handled by the standard k–ɛ and k–ω turbulence models, and the results are compared in order to predict their suitability. An image-based technique using CMOS camera is adopted to determine the powder flow characteristics. The model is validated with the in-house experimental results and verified available results in the literature. The findings of this work confirms the application of the k–ω model for powder gas flow investigations in blown powder additive manufacturing (AM) processes due to its better predictive capability. The proposed model will assist in simulating the direct metal deposition process.


2005 ◽  
Vol 128 (2) ◽  
pp. 541-553 ◽  
Author(s):  
Heng Pan ◽  
Todd Sparks ◽  
Yogesh D. Thakar ◽  
Frank Liou

The quality and efficiency of laser-aided direct metal deposition largely depends on the powder stream structure below the nozzle. Numerical modeling of the powder concentration distribution is complex due to the complex phenomena involved in the two-phase turbulence flow. In this paper, the gravity-driven powder flow is studied along with powder properties, nozzle geometries, and shielding gas settings. A 3-D numerical model is introduced to quantitatively predict the powder stream concentration variation in order to facilitate coaxial nozzle design optimizations. Effects of outer shielding gas directions, inner/outer shielding gas flow rate, powder passage directions, and opening width on the structure of the powder stream are systematically studied. An experimental setup is designed to quantitatively measure the particle concentration directly for this process. The numerical simulation results are compared with the experimental data using prototyped coaxial nozzles. The results are found to match and then validate the simulation. This study shows that the particle concentration mode is influenced significantly by nozzle geometries and gas settings.


Author(s):  
Yuri N. Zavalov ◽  
Vladimir D. Dubrov ◽  
Elena S. Makarova ◽  
Nikolay G. Dubrovin ◽  
Fikret K. Mirzade ◽  
...  

Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


2021 ◽  
Author(s):  
Manuela Oliverio ◽  
Monica Nardi ◽  
Maria Luisa Di Gioia ◽  
Paola Costanzo ◽  
Sonia Bonacci ◽  
...  

Semi-synthesis is an effective strategy to obtain both natural and synthetic analogues of the olive secoiridoids, starting from easy accessible natural compounds.


Sign in / Sign up

Export Citation Format

Share Document