Novel beta function-based image encryption with fractional sine transform

Author(s):  
Sharad Salunke ◽  
M. Venkatadri ◽  
Md. Farukh Hashmi ◽  
Bharti Ahuja
2005 ◽  
Vol 42 (1) ◽  
pp. 21-35 ◽  
Author(s):  
J. Weijian ◽  
G. Mingzhe ◽  
G. Xuemei

A weighted Hardy-Hilbert’s inequality with the parameter λ of form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$ \end{document} is established by introducing two parameters s and λ, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$ \end{document} is the beta function. B *(λ) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.


Author(s):  
Ali Saleh Al Najjar

Absolute protection is a difficult issue to maintain the confidentiality of images through their transmission over open channels such as internet or networks and is a major concern in the media, so image Cryptography becomes an area of attraction and interest of research in the field of information security. The paper will offer proposed system that provides a special kinds of image Encryption image security, Cryptography using RSA algorithm for encrypted images by HEX function to extract HEX Code and using RSA public key algorithm, to generate cipher image text. This approach provides high security and it will be suitable for secured transmission of images over the networks or Internet.


2020 ◽  
Vol 5 (5) ◽  
pp. 1075-1092
Author(s):  
Bhagyashri Pandurangi R ◽  
Chaitra Bhat ◽  
Meenakshi R. Patil

2017 ◽  
Author(s):  
Jamila H. Al-A’meri ◽  
Salah T. Allawi ◽  
May M. Abbas
Keyword(s):  

2011 ◽  
Vol 5 (3) ◽  
pp. 1-15
Author(s):  
Himani Agrawal ◽  
◽  
Monisha Sharma ◽  

2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2019 ◽  
Vol 38 (3) ◽  
pp. 647-678 ◽  
Author(s):  
Ľuboš Ovseník ◽  
Ján Turán ◽  
Tomáš Huszaník ◽  
Jakub Oravec ◽  
Ondrej Kováč ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document