Estimating the density of hybrid nanofluids for thermal energy application: Application of non-parametric and evolutionary polynomial regression data-intelligent techniques

Measurement ◽  
2021 ◽  
pp. 110524
Author(s):  
Mehdi Jamei ◽  
Masoud Karbasi ◽  
Mehdi Mosharaf-Dehkordi ◽  
Ismail Adewale Olumegbon ◽  
Laith Abualigah ◽  
...  
2021 ◽  
pp. 116890
Author(s):  
Humphrey Adun ◽  
Ifeoluwa Wole-Osho ◽  
Eric C. Okonkwo ◽  
Doga Kavaz ◽  
Mustafa Dagbasi

2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Ali Ghorbani ◽  
Mostafa Firouzi Niavol

Coupled Piled Raft Foundations (CPRFs) are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 1016 ◽  
Author(s):  
Mauro Venturini ◽  
Stefano Alvisi ◽  
Silvio Simani ◽  
Lucrezia Manservigi

This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model (“white box” model), two “gray box” models, which integrate theory on turbomachines with specific data correlations, and one “black box” model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53–5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed.


Geomorphology ◽  
2020 ◽  
Vol 350 ◽  
pp. 106895 ◽  
Author(s):  
Hossein Bonakdari ◽  
Azadeh Gholami ◽  
Ahmed M.A. Sattar ◽  
Bahram Gharabaghi

Sign in / Sign up

Export Citation Format

Share Document