Power and Delay Efficient FIR Filter Design Using ESSA and VL-CSKA Based Booth Multiplier

2021 ◽  
pp. 104333
Author(s):  
Assistant Professor Aditya Mandloi ◽  
Associate Professor Dr. Santosh Pawar

In this research, a highly efficient desensitized FIR filter is designed to enhance the performance of digital filtering operation. With regard to FIR filter design, Multiplication and Accumulation component (MAC) forms the core processing entity. Half-band filters employing Ripple Carry Adder (RCA) based MAC structures have a sizeable number of logical elements, leading to high delay and high power consumption. To minimize these issues, a modified Booth multiplier encompassing SQRT Carry Select Adder (CSLA) based MAC component is proposed for the desensitized filter with reduced coefficients and employing lesser number of logical elements forgiving optimum performance with respect to delay and power consumption. The suggested FIR filter is simulated and assessed using EDA simulation tools from Modelsim 6.3c and Xilinx ISE. The results obtained from the proposed Desensitized FIR filter employing the modified booth multiplier with reduced complexity based SQRT CSLA show encouraging signs with respect to 12.08% reduction in delay and 2.2% reduction in power consumption when compared with traditional RCA based digital FIR filter.


Finite Impulse Response (FIR) filters are most important element in signal processing and communication. Area and speed optimization are the essential necessities of FIR filter design. This work looks at the design of Finite Impulse Response (FIR) filters from an arithmetic perspective. Since the fundamental arithmetic operations in the convolution equations are addition and multiplication, they are the objectives of the design analysis. For multiplication, Booth encoding is utilized in order to lessen the quantity of partial products. Consequently, considering carry-propagation free addition strategies should improve the addition operation of the filter. The redundant ternary signed-digit (RTSD) number framework is utilized to speedup addition in the filter. The redundant ternary representation utilizes more bits than required to denote the single binary digit because of which most numbers have several representations. This special behavior of RTSD allows the addition along with the absence of typical carry propagation. Xilinx ISE design suite 14.5 is used for the design and validation of proposed method. From the implementation result, the proposed design of FIR filter is compared with other conventional techniques to show the better performance by means of power, area and delay.


Sign in / Sign up

Export Citation Format

Share Document