Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM215kDa

2021 ◽  
Vol 135 ◽  
pp. 191-203
Author(s):  
Chia Chiu Lim ◽  
Soo Khim Chan ◽  
Yee Ying Lim ◽  
Yuya Ishikawa ◽  
Yee Siew Choong ◽  
...  
Author(s):  
Laura Díaz-Casado ◽  
Israel Serrano-Chacón ◽  
Laura Montalvillo-Jiménez ◽  
Francisco Corzana ◽  
Agatha Bastida ◽  
...  

2021 ◽  
Vol 27 (20) ◽  
pp. 6101-6101
Author(s):  
Laura Díaz‐Casado ◽  
Israel Serrano‐Chacón ◽  
Laura Montalvillo‐Jiménez ◽  
Francisco Corzana ◽  
Agatha Bastida ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 34-49
Author(s):  
Abul Arafat ◽  
Sabrin A. Samad ◽  
Jeremy J. Titman ◽  
Andrew L. Lewis ◽  
Emma R. Barney ◽  
...  

AbstractThis study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zahra Shadman ◽  
Safar Farajnia ◽  
Mohammad Pazhang ◽  
Mohammadreza Tohidkia ◽  
Leila Rahbarnia ◽  
...  

Abstract Background Pseudomonas aeruginosa is the leading cause of nosocomial infections, especially in people with a compromised immune system. Targeting virulence factors by neutralizing antibodies is a novel paradigm for the treatment of antibiotic-resistant pseudomonas infections. In this respect, exotoxin A is one of the most potent virulence factors in P. aeruginosa. The present study was carried out to identify a novel human scFv antibody against the P. aeruginosa exotoxin A domain I (ExoA-DI) from a human scFv phage library. Methods The recombinant ExoA-DI of P. aeruginosa was expressed in E. coli, purified by Ni-NTA column, and used for screening of human antibody phage library. A novel screening procedure was conducted to prevent the elimination of rare specific clones. The phage clone with high reactivity was evaluated by ELISA and western blot. Results Based on the results of polyclonal phage ELISA, the fifth round of biopanning leads to the isolation of several ExoA-DI reactive clones. One positive clone with high affinity was selected by monoclonal phage ELISA and used for antibody expression. The purified scFv showed high reactivity with the recombinant domain I and full-length native exotoxin A. Conclusions The purified anti-exotoxin A scFv displayed high specificity against exotoxin A. The human scFv identified in this study could be the groundwork for developing a novel therapeutic agent to control P. aeruginosa infections.


2010 ◽  
Vol 39 (21) ◽  
pp. 5101 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Padmanabhan Moothetty ◽  
Frank John Berry ◽  
Michael Mortimer ◽  
Krishna Gopakumar Warrier

Sign in / Sign up

Export Citation Format

Share Document