Improvement of tension/compression asymmetry for high-performance ZK61 magnesium alloy rod via tailoring deformation parameters: Upsetting-extrusion temperature and upsetting ratio

Author(s):  
W.J. Wu ◽  
W.Z. Chen ◽  
L.X. Zhang ◽  
X.M. Chen ◽  
H.X. Wang ◽  
...  
2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3888
Author(s):  
Wang ◽  
Tao ◽  
Guo ◽  
Li ◽  
Huang ◽  
...  

The authors wish to make the following corrections to this paper [1]: [...]


2006 ◽  
Vol 503-504 ◽  
pp. 775-780 ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Yoshihito Kawamura

In order to make the effect of processing clear, AM50A magnesium casting alloys were extruded at various extrusion conditions such as extrusion temperature and extrusion ratio. The mechanical properties of AM50A alloy increased with decreasing extrusion temperature. Tensile yield strength and tensile strength of extruded AM50A alloy were 389MPa and 420MPa respectively when the extrusion temperature was 348K. The microstructure of the extruded magnesium alloy showed large grains stretched to the extrusion direction and fine recrystallized grains. Decreased extrusion temperature resulted in improved strength and decreased elongation with increasing of the degree of work hardens and extrusion force. When the extrusion ratio is high, improvement of strength is prevented by rycrystallization and it was observed as crystal orientation by XRD. The elongation of the extrusion increased with the recrystallization of grains. Every magnesium alloy extruded at low temperature has high strength.


2006 ◽  
Vol 2006.1 (0) ◽  
pp. 983-984
Author(s):  
Liqun RUAN ◽  
Yoshihito KAWAMURA ◽  
Keisuke YAMAGUCHI ◽  
Yasuo MARUMO ◽  
Tatsuhiro MUKOUDA

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Bing Zhang ◽  
Wen Wang

With the rapid development of the shipping and the power industry, the demand for high-performance cupronickel alloy pipes is greatly increasing. The main processing methods of this alloy include semisolid ingot casting and deformation by hot extrusion. Many defects appear during the hot extrusion process for large diameter cupronickel alloy pipes, which results in considerable problems. Therefore, numerical simulation of hot extrusion for cupronickel alloy pipes before the practical production is of vital significance to properly determine the deformation parameters. In order to obtain the influence of processing parameters on the piercing extrusion process of large diameter cupronickel alloy pipe, metal flowing law under different deformation conditions was simulated and analyzed via employing a 3D FEM code. The results showed that piercing speed had no obvious influence on the cupronickel alloy billet. However, the friction had significant influence on the piercing process of cupronickel alloy billet: with the increase of friction coefficient, the temperature and the load increased.


2011 ◽  
Vol 487 ◽  
pp. 347-351
Author(s):  
Bo Jiang Ma ◽  
X. Cai ◽  
L.A. Li

The high performance diamond brazed saw was developed to cut efficiently AZ31 Magnesium Alloy. The Ti-coated diamond and the uncoated diamond were brazed with NiCr alloy by high-frequency induction under argon atmosphere at 1040°C within 20 seconds. Scanning electron microscopy (SEM), energy dispersion spectrometer (EDS) and X-ray diffraction (XRD) were used to investigate the interfacial microstructures between brazed diamond and the filler alloy. The results show that Cr-carbides forms normally and compactly on the surface of Ti-coated diamond brazed, whereas Cr-carbide forms tangentially and loosely on the surface of uncoated diamond brazed. That is because Ti has changed the mechanism of Cr-carbides formed on the surface of diamond brazed. The test of cutting AZ31 magnesium alloy plate shows that the section cut by Ti-coated diamond saw is much smoother than that cut by uncoated diamond saw after a long time.


Sign in / Sign up

Export Citation Format

Share Document