Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Mg-11Gd-2Zn-0.4Zr alloy

Author(s):  
Qingchen Deng ◽  
Yujuan Wu ◽  
Wenxu Zhu ◽  
Kai Chen ◽  
Dazhi Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 790 ◽  
Author(s):  
Fuwen Chen ◽  
Guanglong Xu ◽  
Kechao Zhou ◽  
Hui Chang

Bimodal microstructures where globular α and acicular α phases are embedded in the β matrix are commonly used in industry-relevant Ti-55531. To optimize the performance of Ti-55531 through heat treatment, it is crucial to understand and control the phase transformation in the as-received bimodal Ti-55531 as well as its microstructure evolution. In this work, the isochronal phase transformations and microstructure evolution in the bimodal Ti-55531 during the continuous heating were systematically studied by combining dilatometry, XRD phase analyses, and SEM observation. The β → α transformation occurred at 678 K only with the acicular α. When the temperature was higher than 788 K, α → β transformation took place in two separate stages (i.e., αacicular → β and αglobular → β transformation). The dissolution of αglobular occurred after the dissolution of αacicular was completed. Due to the difference in the chemical composition and interface curvature between αacicular and αglobular, the average activation energy for αacicular → β transformation was lower than that for the αglobular → β transformation. The isochronal phase transformation and microstructure evolution during continuous heating in the present work could be used to optimize heat treatment procedures for desired mechanical properties.


China Foundry ◽  
2017 ◽  
Vol 14 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Jing Wang ◽  
Xiao-gang Fang ◽  
Shu-sen Wu ◽  
Shu-lin Lü

China Foundry ◽  
2017 ◽  
Vol 14 (6) ◽  
pp. 485-491 ◽  
Author(s):  
Yang Zhang ◽  
Xiao-ping Li ◽  
Shun-ping Sun ◽  
Ya-lin Lu ◽  
Guo-hua Wu

Sign in / Sign up

Export Citation Format

Share Document