Analysis of Wu's slip and CNTs (single and multi-wall carbon nanotubes) in Darcy-Forchheimer mixed convective nanofluid flow with magnetic dipole: Intelligent nano-coating simulation

2022 ◽  
Vol 277 ◽  
pp. 115586
Author(s):  
Faris Alzahrani ◽  
M. Ijaz Khan
2021 ◽  
Vol 1200 ◽  
pp. 113223
Author(s):  
Varun Kumar ◽  
J.K. Madhukesh ◽  
A.M. Jyothi ◽  
B.C. Prasannakumara ◽  
M. Ijaz Khan ◽  
...  

2021 ◽  
Author(s):  
Muhammad Bilal ◽  
Hamna Arshad ◽  
Muhammad Ramzan

Abstract The key objective of the present research is to examine the hybrid magnetohydrodynamics (MHD) nanofluid (Carbon-nanotubes and ferrous oxide-water) CNT−Fe− 3O−4/H−2O flow into a horizontal parallel channel with thermal radiation through squeezing and dilating porous walls. The parting motion is triggered by the porous walls of the channel. The fluid flow is time-dependent and laminar. The channel is asymmetric and the upper and lower walls are distinct in temperature and porosity. With the combination of nanoparticles of Fe3O4 and single and multi-wall carbon nanotubes, the hybrid nanofluid principle is exploited. By using the similarity transformation, the set of partial differential equations (PDEs) of this mathematical model, governed by momentum and energy equations, is reduced to corresponding ordinary differential equations (ODEs). A very simple numerical approach called the Runge-Kutta system of order four along with the shooting technique is used to achieve the solutions for regulating ODEs. MATLAB computing software is used to create temperature and velocity profile graphs for various emerging parameters. At the end of the manuscript, the main conclusions are summarized.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 687 ◽  
Author(s):  
Jamshaid Rahman ◽  
Umair Khan ◽  
Shafiq Ahmad ◽  
Muhammad Ramzan ◽  
Muhammad Suleman ◽  
...  

A mathematical model comprising Darcy Forchheimer effects on the 3D nanofluid flow with engine oil as a base fluid containing suspended carbon nanotubes (CNTs) is envisioned. The CNTs are of both types i.e., multi-wall carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). The flow is initiated by an exponentially stretched surface. The impacts of Cattaneo–Christov heat flux along with velocity and thermal slip conditions are key factors in the novelty of the defined model. The boundary layer notion is designed to convert the compact form of equations into the component shape. Appropriate transformations lead to differential equations with high nonlinearity. The final non-dimensional system is solved numerically by a “MATLAB” function known as bvp4c. For both CNTs, different graphical sketches are drawn to present the influence of arising parameters versus related profiles. The outcomes show that higher slip parameter boosts the axial velocity, whereas fluid temperature lowers for a sturdier relaxation parameter.


2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


2011 ◽  
Vol 26 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Meng-Li ZHAO ◽  
Yu-Chen YUE ◽  
Li YUAN ◽  
De-Jun LI ◽  
Xiao-Ying LÜ ◽  
...  

Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2020 ◽  
Vol 62 (11) ◽  
pp. 2173-2183
Author(s):  
V. V. Bolotov ◽  
E. V. Knyazev ◽  
P. M. Korusenko ◽  
S. N. Nesov ◽  
V. A. Sachkov

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


Sign in / Sign up

Export Citation Format

Share Document