Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties

2021 ◽  
Vol 118 ◽  
pp. 111419
Author(s):  
Kelsey DeFrates ◽  
Theodore Markiewicz ◽  
Ye Xue ◽  
Kayla Callaway ◽  
Christopher Gough ◽  
...  
Keyword(s):  
Air Jet ◽  
2020 ◽  
Vol 21 (16) ◽  
pp. 5780
Author(s):  
Christopher R. Gough ◽  
Kristen Bessette ◽  
Ye Xue ◽  
Xiaoyang Mou ◽  
Xiao Hu

Diabetic patients are especially susceptible to chronic wounds of the skin, which can lead to serious complications. Sodium citrate is one potential therapeutic molecule for the topical treatment of diabetic ulcers, but its viability requires the assistance of a biomaterial matrix. In this study, nanofibers and thin films fabricated from natural corn zein protein are explored as a drug delivery vehicle for the topical drug delivery of sodium citrate. Corn zein is cheap and abundant in nature, and easily extracted with high purity, while nanofibers are frequently cited as ideal drug carriers due to their high surface area and high porosity. To further reduce costs, the 1-D nanofibers in this study were fabricated through an air jet-spinning method rather than the conventional electrospinning method. Thin films were also created as a comparative 2-D material. Corn zein composite nanofibers and thin films with different concentration of sodium citrate (1–30%) were analyzed through FTIR, DSC, TGA, and SEM. Results reveal that nanofibers are a much more effective vehicle than films, with the ability to interact with sodium citrate. Thermal analysis results show a stable material with low degradation, while FTIR reveals strong control over the protein secondary structures and hold of citrate. These tunable properties and morphologies allow the fibers to provide a sustained release of citrate and then revert to their structure prior to citrate loading. A statistical analysis via t-test confirmed a significant difference between fiber and film drug release. A biocompatibility study also confirms that cells are much more tolerant of the porous nanofiber structure than the nonporous protein films, and lower percentages of sodium citrate (1–5%) were outperformed to higher percentages (15–30%). This study demonstrated that protein-based nanofiber materials have high potential as vehicles for the delivery of topical diabetic drugs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1407
Author(s):  
Courtney van Ballegooie ◽  
Alice Man ◽  
Alessia Pallaoro ◽  
Marcel Bally ◽  
Byron D. Gates ◽  
...  

Drug-delivery vehicles have been used extensively to modulate the biodistribution of drugs for the purpose of maximizing their therapeutic effects while minimizing systemic toxicity. The release characteristics of the vehicle must be balanced with its encapsulation properties to achieve optimal delivery of the drug. An alternative approach is to design a delivery vehicle that preferentially releases its contents under specific endogenous (e.g., tissue pH) or exogenous (e.g., applied temperature) stimuli. In the present manuscript, we report on a novel delivery system with potential for triggered release using external beam radiation. Our group evaluated Zein protein as the basis for the delivery vehicle and used radiation as the exogenous stimulus. Proteins are known to react with free radicals, produced during irradiation in aqueous suspensions, leading to aggregation, fragmentation, amino acid modification, and proteolytic susceptibility. Additionally, we incorporated gold particles into the Zein protein matrix to create hybrid Zein–gold nanoparticles (ZAuNPs). Zein-only nanoparticles (ZNPs) and ZAuNPs were subsequently exposed to kVp radiation (single dose ranging from 2 to 80 Gy; fractionated doses of 2 Gy delivered 10 times) and characterized before and after irradiation. Our data indicated that the presence of gold particles within Zein particles was correlated with significantly higher levels of alterations to the protein, and was associated with higher rates of release of the encapsulated drug compound, Irinotecan. The aggregate results demonstrated a proof-of-principle that radiation can be used with gold nanoparticles to modulate the release rates of protein-based drug-delivery vehicles, such as ZNPs.


2012 ◽  
Vol 439 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
F.F.O. Sousa ◽  
Asteria Luzardo-Álvarez ◽  
José Blanco-Méndez ◽  
Manuel Martín-Pastor

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ibrahim M. El-Sherbiny ◽  
Hugh D. C. Smyth

We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks) was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC). Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2or PEG-g-chitosan/CaCl2as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS) and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


Sign in / Sign up

Export Citation Format

Share Document