Polyaniline film decorated with cadmium sulfide- NrGO nanosheet heterostructure hybrid as highly efficient photoelectrocatalyst for water splitting

2022 ◽  
Vol 141 ◽  
pp. 106425
Author(s):  
Hanieh Mashhadi kashtiban ◽  
Haleh Rasouli ◽  
Pariya Yardani Sefidi ◽  
Mir Ghasem Hosseini
2015 ◽  
Vol 3 (24) ◽  
pp. 12769-12776 ◽  
Author(s):  
Zemin Zhang ◽  
Xiaodong Li ◽  
Caitian Gao ◽  
Feng Teng ◽  
Youqing Wang ◽  
...  

A staggered gap heterojunction has been built with BaSnO3 nanowires and CdS quantum dots for highly efficient water splitting photoanodes.


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xixi Ji ◽  
Yanhong Lin ◽  
Jie Zeng ◽  
Zhonghua Ren ◽  
Zijia Lin ◽  
...  

AbstractDevelopment of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm−2 and small Tafel slope of 29.2 mV dec−1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm−2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.


2019 ◽  
Vol 48 (31) ◽  
pp. 11934-11940 ◽  
Author(s):  
Jianmin Wang ◽  
Yunan Wang ◽  
Xinchao Xv ◽  
Yan Chen ◽  
Xi Yang ◽  
...  

Defective Fe3+ self-doped spinel ZnFe2O4 with abundant oxygen vacancies exhibits largely enhanced photoelectrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document