Insights into MWCNTs/polyimide nanocomposites: from synthesis to application as free-standing flexible electrodes in low-cost micro-supercapacitors

2022 ◽  
Vol 23 ◽  
pp. 100671
Author(s):  
I. Butnaru ◽  
A.-P. Chiriac ◽  
C.-P. Constantin ◽  
M.-D. Damaceanu
Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


2018 ◽  
Vol 8 (12) ◽  
pp. 1702242 ◽  
Author(s):  
Xiao-Yang Yang ◽  
Ji-Jing Xu ◽  
Zhi-Wen Chang ◽  
Di Bao ◽  
Yan-Bin Yin ◽  
...  

NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Huaxu Zhou ◽  
Guotao Dong ◽  
Ajabkhan Sailjoi ◽  
Jiyang Liu

Three-dimensional graphene (3DG) with macroporous structure has great potential in the field of electroanalysis owing to a large active area, excellent electron mobility and good mass transfer. However, simple and low-cost preparation of 3DG electrodes with high electrocatalytic ability is still a challenge. Here, a fast and convenient electrochemical polarization method is established to pretreat free-standing 3DG (p-3DG) to offer high electrocatalytic ability. 3DG with monolithic and macroporous structure prepared by chemical vapor deposition (CVD) is applied as the starting electrode. Electrochemical polarization is performed using electrochemical oxidation (anodization) at high potential (+6 V) followed with electrochemical reduction (cathodization) at low potential (−1 V), leading to exposure of edge of graphene and introduction of oxygen-containing groups. The as-prepared p-3DG displays increased hydrophilicity and improved electrocatalytic ability. As a proof of concept, p-3DG was used to selective electrochemical detection of two isomers of benzenediol, hydroquinone (p-BD) and catechol (o-BD). In comparison with initial 3DG, p-3DG exhibits increased reversibility of redox reaction, improved peak current and good potential resolution with high potential separation between p-BD and o-BD. Individual or selective determination of p-BD or o-BD in single substance solution or binary mixed solution is realized. Real analysis of pond water is also achieved.


Author(s):  
Nan Meng ◽  
Xintong Ren ◽  
Jiyue Wu ◽  
Emiliano Bilotti ◽  
Michael J. Reece ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Kordek-Khalil ◽  
Dawid Janas ◽  
Piotr Rutkowski

AbstractLarge-scale sustainable hydrogen production by water electrolysis requires a highly active yet low-cost hydrogen evolution reaction (HER) electrocatalyst. Conductive carbon nanomaterials with high surface areas are promising candidates for this purpose. In this contribution, single-walled carbon nanotubes (SWCNTs) are assembled into free-standing films and directly used as HER electrodes. During the initial 20 h of electrocatalytic performance in galvanostatic conditions, the films undergo activation, which results in a gradual overpotential decrease to the value of 225 mV. Transient physicochemical properties of the films at various activation stages are characterized to reveal the material features responsible for the activity boost. Results indicate that partial oxidation of iron nanoparticles encapsulated in SWCNTs is the major contributor to the activity enhancement. Furthermore, besides high activity, the material, composed of only earth-abundant elements, possesses exceptional performance stability, with no activity loss for 200 h of galvanostatic performance at − 10 mA cm−2. In conclusion, the work presents the strategy of engineering a highly active HER electrode composed of widely available elements and provides new insights into the origins of electrocatalytic performance of SWCNT-based materials in alkaline HER.


Author(s):  
Ping Shang ◽  
Yuanhao Liu ◽  
Yingying Mei ◽  
Lisha Wu ◽  
Yanfeng Dong

Aqueous zinc ion batteries (ZIBs) hold great promises for large-scale energy storage and wearable devices due to their low cost and high safety, but suffer from low capacity and energy...


Author(s):  
Jianyi Chen ◽  
Yunlong Guo ◽  
Liping Huang ◽  
Yunzhou Xue ◽  
Dechao Geng ◽  
...  

Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene.


Sign in / Sign up

Export Citation Format

Share Document