Recent progress of flexible NO2 and NH3 gas sensors based on transition metal dichalcogenides for room temperature sensing

2022 ◽  
Vol 23 ◽  
pp. 100726
Author(s):  
P. Goswami ◽  
G. Gupta
Nanoscale ◽  
2019 ◽  
Vol 11 (25) ◽  
pp. 12381-12387 ◽  
Author(s):  
Samuel Brem ◽  
Jonas Zipfel ◽  
Malte Selig ◽  
Archana Raja ◽  
Lutz Waldecker ◽  
...  

The reduced dielectric screening in atomically thin transition metal dichalcogenides allows to study the hydrogen-like series of higher exciton states in optical spectra even at room temperature.


Nano Research ◽  
2021 ◽  
Author(s):  
Lu Zheng ◽  
Xuewen Wang ◽  
Hanjun Jiang ◽  
Manzhang Xu ◽  
Wei Huang ◽  
...  

2018 ◽  
Vol 8 (7) ◽  
pp. 1157 ◽  
Author(s):  
Alexander Krasnok ◽  
Andrea Alù

Monolayer (1L) transition-metal dichalcogenides (TMDCs) are attractive materials for several optoelectronic applications because of their strong excitonic resonances and valley-selective response. Valley excitons in 1L-TMDCs are formed at opposite points of the Brillouin zone boundary, giving rise to a valley degree of freedom that can be treated as a pseudospin, and may be used as a platform for information transport and processing. However, short valley depolarization times and relatively short exciton lifetimes at room temperature prevent using valley pseudospins in on-chip integrated valley devices. Recently, it was demonstrated how coupling these materials to optical nanoantennas and metasurfaces can overcome this obstacle. Here, we review the state-of-the-art advances in valley-selective directional emission and exciton sorting in 1L-TMDC mediated by nanostructures and nanoantennas. We briefly discuss the optical properties of 1L-TMDCs paying special attention to their photoluminescence/absorption spectra, dynamics of valley depolarization, and the valley Hall effect. Then, we review recent works on nanostructures for valley-selective directional emission from 1L-TMDCs.


Nano Letters ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 5214-5220
Author(s):  
Jiaojian Shi ◽  
Edoardo Baldini ◽  
Simone Latini ◽  
Shunsuke A. Sato ◽  
Yaqing Zhang ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei-Ting Hsu ◽  
Yen-Lun Chen ◽  
Chang-Hsiao Chen ◽  
Pang-Shiuan Liu ◽  
Tuo-Hung Hou ◽  
...  

Abstract A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.


Sign in / Sign up

Export Citation Format

Share Document