scholarly journals Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats

2021 ◽  
Vol 150 ◽  
pp. 105246
Author(s):  
Rose B. Creed ◽  
Rosalinda C. Roberts ◽  
Charlene B. Farmer ◽  
Lori L. McMahon ◽  
Matthew S. Goldberg
2018 ◽  
Author(s):  
Christian R. Lee ◽  
Alex J. Yonk ◽  
Joost Wiskerke ◽  
Kenneth G. Paradiso ◽  
James M. Tepper ◽  
...  

SummaryThe striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum, and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.


2006 ◽  
Vol 141 (6) ◽  
pp. 657-661
Author(s):  
A. I. Khrenov ◽  
A. A. Fedorov ◽  
V. N. Sirotkin ◽  
I. Yu. Zaraiskaya ◽  
T. A. Leontovich

2019 ◽  
Vol 117 (38) ◽  
pp. 23304-23310 ◽  
Author(s):  
Ben Jerry Gonzales ◽  
Diptendu Mukherjee ◽  
Reut Ashwal-Fluss ◽  
Yonatan Loewenstein ◽  
Ami Citri

The induction of immediate-early gene (IEG) expression in brain nuclei in response to an experience is necessary for the formation of long-term memories. Additionally, the rapid dynamics of IEG induction and decay motivates the common use of IEG expression as markers for identification of neuronal assemblies (“ensembles”) encoding recent experience. However, major gaps remain in understanding the rules governing the distribution of IEGs within neuronal assemblies. Thus, the extent of correlation between coexpressed IEGs, the cell specificity of IEG expression, and the spatial distribution of IEG expression have not been comprehensively studied. To address these gaps, we utilized quantitative multiplexed single-molecule fluorescence in situ hybridization (smFISH) and measured the expression of IEGs (Arc,Egr2, andNr4a1) within spiny projection neurons (SPNs) in the dorsal striatum of mice following acute exposure to cocaine. Exploring the relevance of our observations to other brain structures and stimuli, we also analyzed data from a study of single-cell RNA sequencing of mouse cortical neurons. We found that while IEG expression is graded, the expression of multiple IEGs is tightly correlated at the level of individual neurons. Interestingly, we observed that region-specific rules govern the induction of IEGs in SPN subtypes within striatal subdomains. We further observed that IEG-expressing assemblies form spatially defined clusters within which the extent of IEG expression correlates with cluster size. Together, our results suggest the existence of IEG-expressing neuronal “superensembles,” which are associated in spatial clusters and characterized by coherent and robust expression of multiple IEGs.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Crystal Rock ◽  
Hector Zurita ◽  
Charles Wilson ◽  
Alfonso junior Apicella

Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication.


2020 ◽  
Author(s):  
Sara M. Green ◽  
Sanya Nathani ◽  
Joseph Zimmerman ◽  
David Fireman ◽  
Nikhil M. Urs

ABSTRACTThe cortex plays an important role in regulating motivation and cognition, and does so by regulating multiple subcortical brain circuits. Glutamatergic pyramidal neurons in the prefrontal cortex (PFC) are topographically organized in different subregions such as the prelimbic, infralimbic and orbitofrontal, and project to topographically-organized subcortical target regions. Dopamine D1 and D2 receptors are expressed on glutamatergic pyramidal neurons in the PFC. However, it is unclear whether D1 and D2 receptor-expressing pyramidal neurons in the PFC are also topographically organized. We used a retrograde adeno-associated virus (AAVRG)-based approach to illuminate the topographical organization of D1 and D2 receptor-expressing neurons, projecting to distinct striatal and midbrain subregions. Our experiments reveal that AAVRG injection in the nucleus accumbens (NAcc) or dorsal striatum (dSTR) of D1Cre mice labeled distinct neuronal subpopulations in medial orbitofrontal or prelimbic PFC, respectively. However, AAVRG injection in NAcc or dSTR of D2Cre mice labeled medial orbitofrontal, but not medial prelimbic PFC, respectively. Additionally, D2R+ but not D1R+ PFC neurons were labeled upon injection of AAVRG in substantia nigra pars compacta (SNpc). Thus, our data are the first to highlight a unique dopamine receptor-specific topographical pattern in the PFC, which could have profound implications for corticostriatal signaling in the basal ganglia.SIGNIFICANCE STATEMENTCorticostriatal connections play an important role in regulating goal-directed and habitual behavior, and neuromodulators such as cortical dopamine play an important role in behavioral flexibility. Dopamine receptor expressing D1R+ and D2R+ projection neurons in the cortex mediate the effects of cortical dopamine, but whether these neurons are anatomically organized in a manner that would explain how these neurons mediate these complex effects, is not clear. Our results show a distinct topographical organization of D1R+ and D2R+ PFC pyramidal neurons that project to distinct striatal and midbrain subregions. These results suggest that effects of cortical dopamine are mediated by anatomically localized distinct receptor- and target-defined subcircuits.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123381 ◽  
Author(s):  
Qingchun Guo ◽  
Daqing Wang ◽  
Xiaobin He ◽  
Qiru Feng ◽  
Rui Lin ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bradley M. Roberts ◽  
Natalie M. Doig ◽  
Katherine R. Brimblecombe ◽  
Emanuel F. Lopes ◽  
Ruth E. Siddorn ◽  
...  

Abstract Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


2018 ◽  
Author(s):  
Kuan-Ming Lu ◽  
Shih-Yun Chen ◽  
Hsin-An Ko ◽  
Ting-Hao Huang ◽  
Janice Hsin-Jou Hao ◽  
...  

ABSTRACTThe division of the striatum into dorsal and ventral districts is of central clinical importance. The dorsal striatum is differentially affected in Huntington’s disease, dopamine in the ventral striatum is differentially spared in Parkinson’s disease, and human brain imaging studies implicate the ventral striatum in addictive disorders. If fits that the dorsal striatum contains the cells of origin of the direct and indirect basal ganglia pathways for motor control. The ventral striatum is a node in neural circuits related to motivation and affect. Despite these striking neurobiologic contrasts, there is almost no information about how the dorsal and ventral divisions of the striatum are set up during development. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of developing striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and ventral striatum including the cell origin of the direct and indirect pathways. We show that Nolz-1 suppresses Dlx1/2 expression. Deletion of Nolz-1 or over-expression of Dlx1/2 can produce a striatal phenotype characterized by withered dorsal striatum and a swollen ventral striatum, and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. This evidence suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into the developing striatum.


2020 ◽  
Author(s):  
Rafael Renteria ◽  
Christian Cazares ◽  
Emily T. Baltz ◽  
Drew C. Schreiner ◽  
Ege A. Yalcinbas ◽  
...  

AbstractPsychiatric disease often produces symptoms that have divergent effects on neural activity. For example, in drug dependence, dysfunctional value-based decision-making and compulsive-like actions have been linked to hypo- and hyper-activity of orbital frontal cortex (OFC)-basal ganglia circuits, respectively, however, the underlying mechanisms are unknown. Here we show that alcohol dependence enhanced activity in OFC terminals in dorsal striatum (OFC-DS) associated with actions, but reduced activity of the same terminals during periods of outcome retrieval, corresponding with a loss of outcome control over decision-making. Disrupted OFC-DS terminal activity was due to a dysfunction of dopamine-type 1 receptors on spiny projection neurons (D1R SPNs) that resulted in increased retrograde endocannabinoid (eCB) signaling at OFC-D1R SPN synapses reducing OFC-DS transmission. Blocking CB1 receptors restored OFC-DS activity in vivo and rescued outcome-based control over decision-making. These findings demonstrate a circuit-, synapse-, and computation specific mechanism gating OFC activity following the induction of alcohol dependence.


Sign in / Sign up

Export Citation Format

Share Document