Flow and heat transfer simulation in the ADS Dense Granular-flow Target using the Material Point Method

2022 ◽  
Vol 388 ◽  
pp. 111626
Author(s):  
Qian Sun ◽  
Tianji Peng ◽  
Jun Sun ◽  
Zhiwei Zhou
2017 ◽  
Vol 140 ◽  
pp. 11010
Author(s):  
Minglong Fei ◽  
Qicheng Sun ◽  
Kimberly Hill ◽  
Gordon G. D. Zhou

2014 ◽  
Vol 553 ◽  
pp. 501-506 ◽  
Author(s):  
Wojciech Tomasz Sołowski ◽  
Scott William Sloan

The material point method is a novel numerical technique which is especially well-suited to solving problems involving large or extreme deformations. This paper shows the results of the modelling of flow of granular material in inclined channels. During the calculations the granular material is approximated by a Mohr-Coulomb constitutive model. The computed flow is subsequently compared to experimental results published in the literature.


Author(s):  
Xuchen Han ◽  
Theodore F. Gast ◽  
Qi Guo ◽  
Stephanie Wang ◽  
Chenfanfu Jiang ◽  
...  

2021 ◽  
Vol 112 ◽  
pp. 103904
Author(s):  
Fabricio Fernández ◽  
Jhonatan E.G. Rojas ◽  
Eurípedes A. Vargas ◽  
Raquel Q. Velloso ◽  
Daniel Dias

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Chendi Cao ◽  
Mitchell Neilsen

Dam embankment breaches caused by overtopping or internal erosion can impact both life and property downstream. It is important to accurately predict the amount of erosion, peak discharge, and the resulting downstream flow. This paper presents a new model based on the material point method to simulate soil and water interaction and predict failure rate parameters. The model assumes that the dam consists of a homogeneous embankment constructed with cohesive soil, and water inflow is defined by a hydrograph using other readily available reach routing software. The model uses continuum mixture theory to describe each phase where each species individually obeys the conservation of mass and momentum. A two-grid material point method is used to discretize the governing equations. The Drucker–Prager plastic flow model, combined with a Hencky strain-based hyperelasticity model, is used to compute soil stress. Water is modeled as a weakly compressible fluid. Analysis of the model demonstrates the efficacy of our approach for existing examples of overtopping dam breach, dam failures, and collisions. Simulation results from our model are compared with a physical-based breach model, WinDAM C. The new model can capture water and soil interaction at a finer granularity than WinDAM C. The new model gradually removes the granular material during the breach process. The impact of material properties on the dam breach process is also analyzed.


2018 ◽  
Vol 176 ◽  
pp. 170-181 ◽  
Author(s):  
Zhen-Peng Chen ◽  
Xiong Zhang ◽  
Kam Yim Sze ◽  
Lei Kan ◽  
Xin-Ming Qiu

Sign in / Sign up

Export Citation Format

Share Document