scholarly journals Quantisation of Lorentz invariant scalar field theory in non-commutative space-time and its consequence

2022 ◽  
Vol 974 ◽  
pp. 115633
Author(s):  
E. Harikumar ◽  
Vishnu Rajagopal
1980 ◽  
Vol 130 (1) ◽  
pp. 215-248 ◽  
Author(s):  
Lowell S Brown ◽  
John C Collins

Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Alexander A. Chernitskii

The scalar field of space-time film is considered as unified fundamental field. The field model under consideration is the space-time generalization of the model for a two-dimensional thin film. The force and metrical interactions between solitons are considered. These interactions correspond to the electromagnetic and gravitational interactions respectively. The metrical interaction and its correspondence to the gravitational one are considered in detail. The practical applications of this approach are briefly discussed.


2015 ◽  
Vol 30 (36) ◽  
pp. 1550220 ◽  
Author(s):  
I. J. Morales Ulion ◽  
E. R. Bezerra de Mello ◽  
A. Yu. Petrov

In this paper, we consider a Lorentz-breaking scalar field theory within the Horava–Lifshtz approach. We investigate the changes that a space–time anisotropy produces in the Casimir effect. A massless real quantum scalar field is considered in two distinct situations: between two parallel plates and inside a rectangular two-dimensional box. In both cases, we have adopted specific boundary conditions on the field at the boundary. As we shall see, the energy and the Casimir force strongly depends on the parameter associated with the breaking of Lorentz symmetry and also on the boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document