scholarly journals Dynamic behaviors of a hinged multi-body floating aquaculture platform under regular waves

2022 ◽  
Vol 243 ◽  
pp. 110278
Author(s):  
Chao Ma ◽  
Chun-Wei Bi ◽  
Zhijing Xu ◽  
Yun-Peng Zhao
Author(s):  
Mir Tareque Ali

Abstract When two or more bodies are floating in waves in each other’s vicinity, the fluid loading on the separate bodies will be influenced by the presence of the neighboring bodies. The wave loads on each body are affected, because of sheltering or wave-reflection effects due to the presence of surrounding floating body, while additional loads are exerted by the radiated waves, which are produced by the motions of the neighboring bodies. For a multi-body system, it is important to accurately compute the hydrodynamic coefficients and interaction coefficients, since these parameters will be used later to solve the 6xN simultaneous equations to predict the motion responses (where N is the number of freely floating bodies in the multi-body system). This paper aims to investigate the hydrodynamic interaction coefficients for two three dimensional (3-D) bodies floating freely in each other’s vicinity. Since the nature of hydrodynamic interaction is rather complex, it is usually recommended to study this complicated phenomenon using numerically accurate scheme. A computer code developed using 3-D source distribution method which is based on linear three-dimensional potential theory is used and the validation of the computer code has been justified by comparing the present results with that of the published ones for hydrodynamic coefficients and interaction coefficients of two bodies closely floating in regular waves. The calculated results for box-cylinder model are compared with the published results and the agreement is quite satisfactory. Numerical simulations are further conducted for two closely floating rectangular barges of side-by-side position in regular waves. During the computations of hydrodynamic coefficients and interaction coefficients for multi-body model, the separation distance between the floating bodies have been varied. Finally, some conclusions are drawn on the basis of the present analysis.


2011 ◽  
Vol 211-212 ◽  
pp. 290-294 ◽  
Author(s):  
Sheng Hai Hu ◽  
Bin Guo ◽  
Kun Xiu Deng ◽  
Peng Xu

A main reason that leads to the complex dynamic behaviors of roller chain is the impact during engagement. In this paper, a contact analysis methodology is proposed to study the complex dynamic behaviors of roller chain efficiently. Considering the actual tooth profile, a detection algorithm of roller-sprocket contact was presented. Multi-body dynamics was used to analyze the contact kinematics relationships for purpose of simulating the impact between roller and sprocket precisely. Based on Hertz contact theory, a non-linear contact model of roller-sprocket is developed. Introducing the model to the numerical simulation of a roller chain system, the results validate the effectiveness of the model.


2018 ◽  
Author(s):  
S.C. Wu ◽  
Xiangdong Liu ◽  
Chengbin Zhang ◽  
Yongping Chen

2015 ◽  
Vol 8 (1) ◽  
pp. 2005-2009
Author(s):  
Diandong Ren ◽  
Lance M. Leslie ◽  
Congbin Fu

 Legged locomotion of robots has advantages in reducing payload in contexts such as travel over deserts or in planet surfaces. A recent study (Li et al. 2013) partially addresses this issue by examining legged locomotion over granular media (GM). However, they miss one extremely significant fact. When the robot’s wheels (legs) run over GM, the granules are set into motion. Hence, unlike the study of Li et al. (2013), the viscosity of the GM must be included to simulate the kinematic energy loss in striking and passing through the GM. Here the locomotion in their experiments is re-examined using an advanced Navier-Stokes framework with a parameterized granular viscosity. It is found that the performance efficiency of a robot, measured by the maximum speed attainable, follows a six-parameter sigmoid curve when plotted against rotating frequency. A correct scaling for the turning point of the sigmoid curve involves the footprint size, rotation frequency and weight of the robot. Our proposed granular response to a load, or the ‘influencing domain’ concept points out that there is no hydrostatic balance within granular material. The balance is a synergic action of multi-body solids. A solid (of whatever density) may stay in equilibrium at an arbitrary depth inside the GM. It is shown that there exists only a minimum set-in depth and there is no maximum or optimal depth. The set-in depth of a moving robot is a combination of its weight, footprint, thrusting/stroking frequency, surface property of the legs against GM with which it has direct contact, and internal mechanical properties of the GM. If the vehicle’s working environment is known, the wheel-granular interaction and the granular mechanical properties can be grouped together. The unitless combination of the other three can form invariants to scale the performance of various designs of wheels/legs. Wider wheel/leg widths increase the maximum achievable speed if all other parameters are unchanged.


Sign in / Sign up

Export Citation Format

Share Document