Experimental study on wave attenuation performance of a new type of free surface breakwater

2022 ◽  
Vol 244 ◽  
pp. 110447
Author(s):  
Jing-Ping Wu ◽  
Tian-Long Mei ◽  
Zao-Jian Zou
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 748
Author(s):  
Xiaoyan Bian ◽  
Yao Zhang ◽  
Qibin Zhou ◽  
Ting Cao ◽  
Bengang Wei

Building Integrated Photovoltaic (BIPV) modules are a new type of photovoltaic (PV) modules that are widely used in distributed PV stations on the roof of buildings for power generation. Due to the high installation location, BIPV modules suffer from lightning hazard greatly. In order to evaluate the risk of lightning stroke and consequent damage to BIPV modules, the studies on the lightning attachment characteristics and the lightning energy withstand capability are conducted, respectively, based on numerical and experimental methods in this paper. In the study of lightning attachment characteristics, the numerical simulation results show that it is easier for the charges to concentrate on the upper edge of the BIPV metal frame. Therefore, the electric field strength at the upper edge is enhanced to emit upward leaders and attract the lightning downward leaders. The conclusion is verified through the long-gap discharge experiment in a high voltage lab. From the experimental study of multi-discharge in the lab, it is found that the lightning interception efficiency of the BIPV module is improved by 114% compared with the traditional PV modules. In the study of lightning energy withstand capability, a thermoelectric coupling model is established. With this model, the potential, current and temperature can be calculated in the multi-physical field numerical simulation. The results show that the maximum temperature of the metal frame increases by 16.07 °C when 100 kA lightning current flows through it and does not bring any damage to the PV modules. The numerical results have a good consistency with the experimental study results obtained from the 100 kA impulse current experiment in the lab.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Author(s):  
Li YIPING ◽  
Desmond Ofosu ANIM ◽  
Ying WANG ◽  
Chunyang TANG ◽  
Wei DU ◽  
...  

This paper presents a well-controlled laboratory experimental study to evaluate wave attenuation by artificial emergent plants (Phragmites australis) under different wave conditions and plant stem densities. Results showed substantial wave damping under investigated regular and irregular wave conditions and also the different rates of wave height and within canopy wave-induced flows as they travelled through the vegetated field under all tested conditions. The wave height decreased by 6%–25% at the insertion of the vegetation field and towards the downstream at a mean of 0.2 cm and 0.32 cm for regular and irregular waves respectively. The significant wave height along the vegetation field ranged from 0.89–1.76 cm and 0.8–1.28 cm with time mean height of 1.38 cm and 1.11 cm respectively for regular and irregular waves. This patterns as affected by plant density and also location from the leading edge of vegetation is investigated in the study. The wave energy attenuated by plant induced friction was predicted in terms of energy dissipation factor (fe) by Nielsen’s (1992) empirical model. Shear stress as a driving force of particle resuspension and the implication of the wave attenuation on near shore protection from erosion and sedimentation was discussed. The results and findings in this study will advance our understanding of wave attenuation by an emergent vegetation of Phragmites australis, in water system engineering like near shore and bank protection and restoration projects and also be employed for management purposes to reduce resuspension and erosion in shallow lakes.


ICCTP 2010 ◽  
2010 ◽  
Author(s):  
Hua Zang ◽  
Zhao Liu ◽  
Yong-ming Tu ◽  
Yun-mei Meng

AIP Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 099901
Author(s):  
Yi Zhang ◽  
Qiyu Chen ◽  
Wei Zhang ◽  
Zhiying Lu ◽  
Youbao Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document