Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method

2018 ◽  
Vol 77 (4) ◽  
pp. II-II
Author(s):  
Ryo Hamanaka ◽  
Satoshi Yamaoka ◽  
Tuan Nguyen Anh ◽  
Jun-ya Tominaga ◽  
Yoshiyuki Koga ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2934
Author(s):  
Naohiko Tamaya ◽  
Jun Kawamura ◽  
Yoshinobu Yanagi

The aim of this study was to evaluate the tooth movement efficacy of retraction springs made of a new β-titanium alloy, “gum metal”, which has a low Young’s modulus and nonlinear super elasticity. Using double loop springs incorporated into an archwire made of gum metal (GUM) and titanium molybdenum alloy (TMA), the maxillary anterior teeth were moved distally to close an extraction space. The long-term movements were simulated by the finite element method. Its procedure was constructed of two steps, with the first step being the calculation of the initial tooth movement produced by elastic deformation of the periodontal ligament, and in the second step, the alveolar socket was moved by the initial tooth movement. By repeating these steps, the tooth moved by accumulating the initial tooth movement. The number of repeating calculations was equivalent to an elapsed time. In the GUM and TMA springs, the anterior teeth firstly tipped lingually, and then became upright. As a result of these movements, the canine could move bodily. The amount of space closure in GUM spring was 1.5 times that in TMA spring. The initial tipping angle of the canine in the GUM spring was larger than that in the TMA spring. The number of repeating calculations required for the bodily movement in the GUM spring was about two times that in the TMA spring. It was predicted that the speed of space closure in the GUM spring was smaller than that in the TMA spring.


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


2015 ◽  
Vol 16 (9) ◽  
pp. 740-743 ◽  
Author(s):  
HP Raghuveer ◽  
M Hemanth ◽  
MS Rani ◽  
Chathura Hegde ◽  
B Vedavathi ◽  
...  

ABSTRACT Background Orthodontic tooth movement occurs due to various biomechanical changes in the periodontium. Forces within the optimal range yield maximum tooth movement with minimum deleterious effects. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with extrusion and rotational movements using the finite element method FEM. Materials and methods A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with linear material properties. Results It was observed that with the application of extrusive load, the tensile stresses were seen at the apex, whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third, whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. Conclusion For extrusive movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Profitt as optimum forces for orthodontic tooth movement using linear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement. How to cite this article Hemanth M, Raghuveer HP, Rani MS, Hegde C, Kabbur KJ, Vedavathi B, Chaithra D. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I. J Contemp Dent Pract 2015;16(9):740-743.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Yukiko Yokoi ◽  
Atsushi Arai ◽  
Jun Kawamura ◽  
Tomoko Uozumi ◽  
Yohei Usui ◽  
...  

The aim of this study was to clarify the effect of attachment on tooth movement produced by a plastic aligner. Closing of a diastema, in which the maxillary right and left central incisors moved bodily, was simulated using a finite element method. Long-term orthodontic movements of the maxillary dentition were simulated by accumulating the initial displacement of teeth produced by elastic deformation of the periodontal ligament. The incisor tipped and rotated just after placement of the aligner irrespective of the attachment. After a sufficiently long time, the incisor was upright and moved bodily in the aligner with attachment, but the incisor remained tipped in the aligner without attachment. It was demonstrated that the attachment was effective for achieving bodily movement.


1979 ◽  
Vol 24 (90) ◽  
pp. 489-490 ◽  
Author(s):  
J. J. Emery ◽  
E. A. Hanafy ◽  
G. H. Holdsworth ◽  
F. Mirza

Abstract The finite-element method is being used to simulate glacier flow problems, with particular emphasis on the surge behaviour of the Barnes Ice Cap, Baffin Island. Following an advanced feasibility study to determine the influence of major factors such as bed topography and flow relationships, a refined simulation model is being developed to incorporate realistically: the thermal regime of the ice mass; large deformations during flow and sliding; basal sliding zones; a temperature and stress dependent ice flow relationship; mass balance; and three-dimensional influences. The findings of the advanced feasibility study on isothermal, steady-state flow of the Barnes Ice Cap are presented in the paper before turning to a detailed discussion of the refined simulation model and its application to surging. It is clear that the finite-element method allows necessary refinements not available to analytical approaches.


Sign in / Sign up

Export Citation Format

Share Document