Review of femtosecond laser machining technologies for optical fiber microstructures fabrication

2022 ◽  
Vol 147 ◽  
pp. 107628
Author(s):  
Mao-qing Chen ◽  
Tong-yue He ◽  
Yong Zhao
2021 ◽  
Author(s):  
Jun He ◽  
Baijie Xu ◽  
Xizhen Xu ◽  
Changrui Liao ◽  
Yiping Wang

AbstractFiber Bragg grating (FBG) is the most widely used optical fiber sensor due to its compact size, high sensitivity, and easiness for multiplexing. Conventional FBGs fabricated by using an ultraviolet (UV) laser phase-mask method require the sensitization of the optical fiber and could not be used at high temperatures. Recently, the fabrication of FBGs by using a femtosecond laser has attracted extensive interests due to its excellent flexibility in creating FBGs array or special FBGs with complex spectra. The femtosecond laser could also be used for inscribing various FBGs on almost all fiber types, even fibers without any photosensitivity. Such femtosecond-laser-induced FBGs exhibit excellent thermal stability, which is suitable for sensing in harsh environment. In this review, we present the historical developments and recent advances in the fabrication technologies and sensing applications of femtosecond-laser-inscribed FBGs. Firstly, the mechanism of femtosecond-laser-induced material modification is introduced. And then, three different fabrication technologies, i.e., femtosecond laser phase mask technology, femtosecond laser holographic interferometry, and femtosecond laser direct writing technology, are discussed. Finally, the advances in high-temperature sensing applications and vector bending sensing applications of various femtosecond-laser-inscribed FBGs are summarized. Such femtosecond-laser-inscribed FBGs are promising in many industrial areas, such as aerospace vehicles, nuclear plants, oil and gas explorations, and advanced robotics in harsh environments.


2016 ◽  
Vol 55 (21) ◽  
pp. 5575 ◽  
Author(s):  
Yijing Chen ◽  
Yicheng Lai ◽  
Marcus Weng Onn Cheong

2017 ◽  
Vol 11 (3) ◽  
pp. 1770032
Author(s):  
Xue-Qing Liu ◽  
Qi-Dai Chen ◽  
Kai-Min Guan ◽  
Zhuo-Chen Ma ◽  
Yan-Hao Yu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1028
Author(s):  
Na Zhao ◽  
Qijing Lin ◽  
Kun Yao ◽  
Fuzheng Zhang ◽  
Bian Tian ◽  
...  

The optical fiber temperature and refractive index sensor combined with the hollow needle structure for medical treatment can promote the standardization of traditional acupuncture techniques and improve the accuracy of body fluid analysis. A double-parameter sensor based on fiber Bragg grating (FBG) is developed in this paper. The sensor materials are selected through X-ray diffraction (XRD) analysis, and the sensor sensing principle is theoretically analyzed and simulated. Through femtosecond laser writing pure silica fiber, a high temperature resistant wavelength type FBG temperature sensor is obtained, and the FBG is corroded by hydrofluoric acid (HF) to realize a high-sensitivity intensity-type refractive index sensor. Because the light has dual characteristics of energy and wavelength, the sensor can realize simultaneous dual-parameter sensing. The light from the lead-in optical fiber is transmitted to the sensor and affected by temperature and refractive-index; then, the reflection peak is reflected back to the lead-out fiber by the FBG. The high temperature response and the refractive index response of the sensor were measured in the laboratory, and the high temperature characteristics of the sensor were verified in the accredited institute. It is demonstrated that the proposed sensor can achieve temperature sensing up to 1150 °C with the sensitivity of 0.0134 nm/°C, and refractive sensing over a refractive range of 1.333 to 1.4027 with the sensitivity of −49.044 dBm/RIU. The sensor features the advantages of two-parameter measurement, compact structure, and wide temperature range, and it exhibits great potential in acupuncture treatment.


2021 ◽  
Author(s):  
Alireza. Dalili

Femtosecond Laser Machining At Submicron And Nano Scale


2017 ◽  
Vol 35 (24) ◽  
pp. 5404-5410 ◽  
Author(s):  
Antreas Theodosiou ◽  
Amedee Lacraz ◽  
Andreas Stassis ◽  
Charalambos Koutsides ◽  
Michael Komodromos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document