Time-marching schemes for spatially high order accurate discretizations of the Euler and Navier–Stokes equations

2022 ◽  
Vol 130 ◽  
pp. 100795
Author(s):  
Yongle Du ◽  
John A. Ekaterinaris
Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


2020 ◽  
Vol 67 ◽  
pp. 100-119 ◽  
Author(s):  
Laurent Boudin ◽  
Céline Grandmont ◽  
Bérénice Grec ◽  
Sébastien Martin ◽  
Amina Mecherbet ◽  
...  

In this paper, we propose a coupled fluid-kinetic model taking into account the radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term. Conservations properties are checked and an explicit time-marching scheme is proposed. Twodimensional numerical simulations in a branched structure show the influence of the particle size variations on the aerosol dynamics.


Sign in / Sign up

Export Citation Format

Share Document